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Preface 

The International Energy Agency 

The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for 

Economic Co-operation and Development (OECD) to implement an international energy programme. A basic aim of 

the IEA is to foster international co-operation among the 29 IEA participating countries and to increase energy security 

through energy research, development and demonstration in the fields of technologies for energy efficiency and 

renewable energy sources.  

The IEA Energy in Buildings and Communities Programme 

The IEA co-ordinates international energy research and development (R&D) activities through a comprehensive 

portfolio of Technology Collaboration Programmes. The mission of the Energy in Buildings and Communities (EBC) 

Programme is to develop and facilitate the integration of technologies and processes for energy efficiency and 

conservation into healthy, low emission, and sustainable buildings and communities, through innovation and research. 

(Until March 2013, the IEA-EBC Programme was known as the Energy in Buildings and Community Systems 

Programme, ECBCS.) 

The research and development strategies of the IEA-EBC Programme are derived from research drivers, national 

programmes within IEA countries, and the IEA Future Buildings Forum Think Tank Workshops. The research and 

development  (R&D) strategies of IEA-EBC aim to exploit technological opportunities to save energy in the buildings 

sector, and to remove technical obstacles to market penetration of new energy efficient technologies. The R&D 

strategies apply to residential, commercial, office buildings and community systems, and will impact the building 

industry in five focus areas for R&D activities:  

– Integrated planning and building design 

– Building energy systems 

– Building envelope 

– Community scale methods 

– Real building energy use 

The Executive Committee 

Overall control of the IEA-EBC Programme is maintained by an Executive Committee, which not only monitors 

existing projects, but also identifies new strategic areas in which collaborative efforts may be beneficial. As the 

Programme is based on a contract with the IEA, the projects are legally established as Annexes to the IEA-EBC 

Implementing Agreement. At the present time, the following projects have been initiated by the IEA-EBC Executive 

Committee, with completed projects identified by (*): 

Annex 1:  Load Energy Determination of Buildings (*) 

Annex 2:  Ekistics and Advanced Community Energy Systems (*) 

Annex 3:  Energy Conservation in Residential Buildings (*) 

Annex 4:  Glasgow Commercial Building Monitoring (*) 

Annex 5:  Air Infiltration and Ventilation Centre  

Annex 6:   Energy Systems and Design of Communities (*) 

Annex 7:  Local Government Energy Planning (*) 

Annex 8:  Inhabitants Behaviour with Regard to Ventilation (*) 

Annex 9:  Minimum Ventilation Rates (*) 

Annex 10:  Building HVAC System Simulation (*) 

Annex 11:  Energy Auditing (*) 

Annex 12:  Windows and Fenestration (*) 

Annex 13:  Energy Management in Hospitals (*) 

Annex 14:  Condensation and Energy (*) 

Annex 15:  Energy Efficiency in Schools (*) 

Annex 16:  BEMS 1- User Interfaces and System Integration (*) 

Annex 17:  BEMS 2- Evaluation and Emulation Techniques (*) 

Annex 18:  Demand Controlled Ventilation Systems (*) 

Annex 19:  Low Slope Roof Systems (*) 
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Annex 20:  Air Flow Patterns within Buildings (*) 

Annex 21:  Thermal Modelling (*) 

Annex 22:  Energy Efficient Communities (*) 

Annex 23:  Multi Zone Air Flow Modelling (COMIS) (*) 

Annex 24:  Heat, Air and Moisture Transfer in Envelopes (*) 

Annex 25:  Real time HVAC Simulation (*) 

Annex 26:  Energy Efficient Ventilation of Large Enclosures (*) 

Annex 27:  Evaluation and Demonstration of Domestic Ventilation Systems (*) 

Annex 28:  Low Energy Cooling Systems (*) 

Annex 29:  Daylight in Buildings (*) 

Annex 30:  Bringing Simulation to Application (*) 

Annex 31:  Energy-Related Environmental Impact of Buildings (*) 

Annex 32:  Integral Building Envelope Performance Assessment (*) 

Annex 33:  Advanced Local Energy Planning (*) 

Annex 34:  Computer-Aided Evaluation of HVAC System Performance (*) 

Annex 35:  Design of Energy Efficient Hybrid Ventilation (HYBVENT) (*) 

Annex 36:  Retrofitting of Educational Buildings (*) 

Annex 37:  Low Exergy Systems for Heating and Cooling of Buildings (LowEx) (*) 

Annex 38:  Solar Sustainable Housing (*) 

Annex 39:  High Performance Insulation Systems (*) 

Annex 40:  Building Commissioning to Improve Energy Performance (*) 

Annex 41: Whole Building Heat, Air and Moisture Response (MOIST-ENG) (*) 

Annex 42: The Simulation of Building-Integrated Fuel Cell and Other Cogeneration Systems (FC+COGEN-SIM) 

(*) 

Annex 43: Testing and Validation of Building Energy Simulation Tools (*) 

Annex 44: Integrating Environmentally Responsive Elements in Buildings (*) 

Annex 45: Energy Efficient Electric Lighting for Buildings (*) 

Annex 46: Holistic Assessment Tool-kit on Energy Efficient Retrofit Measures for Government Buildings 

(EnERGo) (*) 

Annex 47: Cost-Effective Commissioning for Existing and Low Energy Buildings (*) 

Annex 48: Heat Pumping and Reversible Air Conditioning (*) 

Annex 49: Low Exergy Systems for High Performance Buildings and Communities (*) 

Annex 50: Prefabricated Systems for Low Energy Renovation of Residential Buildings (*) 

Annex 51: Energy Efficient Communities (*) 

Annex 52: Towards Net Zero Energy Solar Buildings (*) 

Annex 53: Total Energy Use in Buildings: Analysis & Evaluation Methods (*) 

Annex 54: Integration of Micro-Generation & Related Energy Technologies in Buildings (*) 

Annex 55: Reliability of Energy Efficient Building Retrofitting - Probability Assessment of Performance & Cost 

(RAP-RETRO) (*) 

Annex 56: Cost Effective Energy & CO2 Emissions Optimization in Building Renovation (*) 

Annex 57: Evaluation of Embodied Energy & CO2 Equivalent Emissions for Building Construction (*) 

Annex 58: Reliable Building Energy Performance Characterisation Based on Full Scale Dynamic Measurements (*) 

Annex 59: High Temperature Cooling & Low Temperature Heating in Buildings (*) 

Annex 60: New Generation Computational Tools for Building & Community Energy Systems (*) 

Annex 61: Business and Technical Concepts for Deep Energy Retrofit of Public Buildings (*) 

Annex 62:  Ventilative Cooling 

Annex 63:  Implementation of Energy Strategies in Communities 

Annex 64:  LowEx Communities - Optimised Performance of Energy Supply Systems with Exergy Principles 

Annex 65:  Long-Term Performance of Super-Insulating Materials in Building Components and Systems 

Annex 66:  Definition and Simulation of Occupant Behavior in Buildings 

Annex 67:  Energy Flexible Buildings 

Annex 68: Indoor Air Quality Design and Control in Low Energy Residential Buildings 

Annex 69: Strategy and Practice of Adaptive Thermal Comfort in Low Energy Buildings 

Annex 70: Energy Epidemiology: Analysis of Real Building Energy Use at Scale 

Annex 71: Building Energy Performance Assessment Based on In-situ Measurements 

 

Working Group - Energy Efficiency in Educational Buildings (*) 

Working Group - Indicators of Energy Efficiency in Cold Climate Buildings (*) 

Working Group - Annex 36 Extension: The Energy Concept Adviser (*) 

Working Group - Survey on HVAC Energy Calculation Methodologies for Non-residential Buildings 
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Introduction to Annex 66  
Energy-related occupant behavior in buildings is a key issue for building design 

optimization, energy diagnosis, performance evaluation, and building energy simulation. 

Actions such as adjusting the thermostat for comfort, switching lights, opening/closing 

windows, pulling up/down window blinds, and moving between spaces, can have a 

significant impact on the real energy use and indoor environmental quality in buildings. 

Having a deeper understanding of occupant behavior, and quantifying their impact on 

the use of building technologies and building performance with modeling and simulation 

tools is crucial to the design and operation of low energy buildings where human-building 

interactions are the key. However, the influence of occupant behavior is under-

recognized or over-simplified in the design, construction, operation, and retrofit of 

buildings.  

Occupant behavior is complex and requires a multi-disciplinary approach if it is ever to 

be fully understood (Figure 1). On one hand, occupant behavior is influenced by external 

factors such as culture, economy and climate, as well as internal factors such as 

individual comfort preference, physiology, and psychology; On the other hand, occupant 

behavior drives occupants’ interactions with building systems which strongly influence 

the building operations and thus energy use/cost and indoor comfort, which in-turn 

influences occupant behavior thus forming a closed loop.  

There are over 20 groups all over the world studying occupant behavior individually. 

However, existing studies on occupant behavior, mainly from the perspective of 

sociology, lack in-depth quantitative analysis. Furthermore, the occupant behavior 

models developed by different researchers are often inconsistent, with a lack of 

consensus in common language, in good experimental design and in modeling 

methodologies. Therefore, there is a strong need for researchers to work together on a 

consistent and standard framework of occupant behavior definition and simulation 

methodology. 

 

Figure 1: Relationship between occupants and buildings 



 

iv 

 

The Annex 66 project was approved unanimously at the 74th Executive Committee 

Meeting of the International Energy Agency’s Energy in Buildings and Communities  

Programme, held on 14th November 2013 in Dublin, Ireland. Operating Agents are Dr. 

Da Yan of Tsinghua University and Dr. Tianzhen Hong of Lawrence Berkeley National 

Laboratory. The Annex aims to (1) set up a standard occupant behavior definition 

platform, (2) establish a quantitative simulation methodology to model occupant behavior 

in buildings, and (3) understand the influence of occupant behavior on building energy 

use and the indoor environment. The project has five subtasks: 

Subtask A - Occupant movement and presence models. Simulating occupant 

movement and presence is fundamental to occupant behavior research. The main 

objective of the subtask is to provide a standard definition and simulation methodology to 

represent how an occupant presents in his/her office and moves between spaces. 

Subtask B - Occupant action models in residential buildings. Occupant action behavior 

in residential buildings affects building performance significantly. This subtask aims to 

provide a standard description for occupant action behavior simulation, systematic 

measurement approach, and modeling and validation methodology for residential 

buildings.  

Subtask C - Occupant action models in commercial buildings. Some specific challenges 

of occupant behavior modeling exist in commercial buildings, where occupant behavior 

is of high spatial and functionality diversity. This subtask aims to provide a standard 

description for occupant action behavior simulation, systematic measurement approach, 

and modeling and validation methodology for commercial buildings. 

Subtask D – Development of new occupant behavior definition and modeling tools, and 

integrating them with current building performance simulation programs. This subtask 

will enable applications by researchers, practitioners, and policy makers and promote 

third-party software development and integration. A framework for an XML schema and 

a software module of occupant behavior models are the main outcomes. 

Subtask E - Applications in building design and operations. This subtask will provide 

case studies to demonstrate applications of the new occupant behavior modeling tools. 

The occupant behavior modeling tools can be used by building designers, energy saving 

evaluators, building operators, and energy policy makers. Case studies will verify the 

applicability of the developed modeling tools by comparing the measured and simulated 

results. 

17 countries and 123 participants from universities, research institutes, software 

companies, design consultant companies, operation managers, and system control 

companies participated in this Annex. All parties expressed an interest in developing a 

robust understanding of energy-related occupant behavior in buildings, via international 

collaboration on developing research methodologies and simulation tools that can bridge 

the gap between occupant behavior and the built environment. The Preparation Phase 

started in November 2013 and continued through November 2014. The Working Phase 

started in December 2014 and lasted for two and a half years. The Reporting Phase took 

place from July 2017 to May 2018. 
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Summary 

This sourcebook brings together case studies of building occupant behavior modeling 

applications from around the world. The purpose is to illustrate the range and types of 

applications, contribute to a framework for classifying types of applications, and explore 

which modeling approaches are most appropriate for which contexts. Essential elements 

of the framework answer the journalist’s often-repeated questions about any story: tell us 

who, what, why, when, and where. In order to determine which model is most fit for 

which context, three dimensions emerge as being particularly important: the stakeholder 

and their problem (Who? Why?); the building type, services and provisions (What?); and 

the process stage and relevant tools (When?).  

The case study summaries answer these questions and provide succinct discussions of 

the modeling strategy that each adopted. The write-ups also include pointers to full 

publications that provide further details for readers wanting to learn more.  
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1. Introduction 

This report summarizes a set of case studies of occupant behavior in buildings and the 

associated use of decision support tools including modeling. These cases of occupant 

behavior modeling innovations provide a “demand-pull” view as seen by the users of 

such tools to counterbalance the “supply-push” perspective that many who create such 

models bring to the subject.1   

Motivation comes from practitioners responding to an international survey who believe 

occupant behavior is a major source of discrepancy between modeled and measured 

building energy performance, and that current modeling practice is quite simplistic 

(O’Brien et al. 2016). A review of nine current building-performance simulation-modeling 

programs by Cowie et al. (2017) identifies “a widening gap between knowledge and 

implementation in the field of occupant behavior modeling.”   

This sourcebook aims to provide a framework for thinking about (1) when occupant 

behavior becomes important for making decisions about buildings, (2) which tools are 

most appropriate for specific applications, and (3) what insights emerge from practical 

experience with these tools. The cases summarized in Table 3 put these concerns into 

context.    

                                                

 

1 To place the supply-push and demand-pull models of scientific innovation in context, see Godin, B. Models of Innovation: 
History of an Idea. MIT Press, Cambridge, MA, 2017.  
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2. In what cases does occupant 

behavior matter? Framework to think 

about it 

PROBLEM STATEMENT 

In order to reduce the gap between the predicted energy use and actual building 

consumption, better understanding of occupant behavior (OB) and assessing the impact 

of OB on energy use is essential. Other subtasks of Annex 66 deal with an extensive 

number of energy prediction methodologies, occupant-modeling techniques and 

advanced dynamic energy simulation models that allow for relatively accurate 

predictions of energy use by integrating advanced user behavior models in energy 

simulations. However, in practice, users may not understand the details of the models 

and may not use them as their creators intended. The “fit-for-purpose” concept 

introduced in IEA EBC Annex 32 emphasizes the importance of matching product 

features to their usage context (Warren 2003). The characteristics of building energy 

performance simulation models incorporating occupant behavior should therefore vary 

according to application context. Thus, highly complex software tools may not be of 

much use when the need is for simple energy use estimations. In a detailed building 

design phase of a project, by contrast, such elaborate features would offer value as long 

as users doing the energy simulations are provided with sufficient guidance.  

Simulation models described in the peer-reviewed literature often incorporate 

considerable knowledge and evidence regarding the links between occupant behaviors 

and building energy performance. By contrast, modeling practice shows relatively little or 

no use of the most advanced developed tools during the design phase due to their 

complexity and difficulties of use, especially in countries where the relevant regulations 

are not in place (O’Brien et al. 2016). Many practitioners use simplified tools such as 

rules of thumb or benchmarking for energy usage estimation. This suggests there is a 

need for better understanding of behavioral impacts on energy use in order to assess for 

which situations are certain tools and techniques suitable. In certain buildings, occupants 

have more impact on the energy use by having direct control over actions leading to 

energy consumption (light switch on/off, fan on/off, thermostat up/down, and 

window/door opening/closing and shading positioning). This needs to be recognized 

before modeling takes place. 

The impact of occupant behavior on energy use is typically not well understood and 

misrepresentation of occupant behavior in simulation inputs can deliver erroneous 

results. There is building-by-building variation in what occupants can control. In addition, 

occupant schedules, activities, and adaptive responses to changing comfort conditions 

vary from person to person.  Thus, it is important to distinguish for which cases it is 

important to analyze occupant behavior more deeply and then to demonstrate and 

quantify the impact of the occupant behavior on building energy performance. In this 
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way, it can be determined which methodology is most suitable for which case and which 

occupant behavior models should be applied.  

DISCUSSION OF ISSUES 

By defining the building design requirements (what, who, when, why) first, it becomes 

easier to recognize the actual needs and purposes of the building occupancy model 

application. Such a categorization strategy can decrease the mismatch between 

predicted and actual energy use, increase the usability of suitable developed tools (OB 

models, energy simulation software) and increase the confidence in using the obtained 

results. Furthermore, the practitioners can acquire a better understanding of the impact 

of the occupant behavior on building energy use for different cases. See Figure 1.  

 

Figure 1: Graphical presentation of the driving factors (who, what, why, when) upon which a suitable 

energy modeling technique should be elaborated for each specific case (Gaetani, Hoes, and 

Hensen 2016). 

Figure 2 illustrates this categorization process. It assembles specific application 

scenarios from contextual factors. Sensitivity of energy use to occupant behavior is 

based on different factors (building scale, typology, occupant type and presence, time 

period). It illustrates that for different levels, different knowledge needs to be obtained in 

order to predict the energy usage as accurately as possible (because occupant behavior 

is not the most influencing factor).   



 

6 

 

 

Figure 2: Graphical presentation of correlation between the different variations of building scale, 

building typology, occupant type and presence, climate and time period according to 

different scenarios: national energy standard, national energy trends, energy contracting, 

peak shaving (Polinder et al. 2013) 

The driving factors can be reduced to three effective dimensions that define the main 

objectives of energy modeling: 

 Who and why: Stakeholder and problem; 

 What: Building type, services and provisions; and 

 When: Process stage and tools. 

Figure 3 summarizes the three-dimensional classification approach modelers could 

follow before performing actual energy performance simulations. This approach helps 

ensure that the main objectives of the simulations are answered. It stimulates and 

triggers the designer to address the occupant behavior impact and by understanding the 

occupant behavior impact level (high/low) on energy use, the modeler can choose an 

occupant behavior model and energy prediction technique that is the most suitable for 

that case.   
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Figure 3: Three dimensions defining main objectives of the energy modeling (Ad van der Aa 2016). 

EXAMPLE 

An illustration of the categorization process in an office building clarifies how it works. It 

is helpful first to analyse the different impact levels of occupant behavior on building 

energy performance. Then the energy modeling techniques and developed tools can be 

selected according to different representative cases: different building types (what) and 

different user types (who). 

 

Figure 4: Influencing parameters of occupant behavior in offices (Ad van der Aa 2016). 

For different building types, energy usage caused by occupant actions (using equipment 

or home appliances) needs to be determined. As illustrated in Figure 4, typically 
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employees in open-plan offices have little influence on energy usage caused by central 

climate control (cannot open windows or adjust thermostat) whereas an employee in a 

cellular office having individual climate control can have a greater impact on energy use.   

Hence, it is important to distinguish between different building typologies having different 

occupancy schedules in order to choose an appropriate energy usage prediction 

technique. For the cases where occupant behavior has a relatively low impact on energy 

usage, simpler occupant behavior models and energy prediction techniques can be 

sufficient.   

Furthermore, in different design stages (when), a different level of accuracy is needed for 

the energy use prediction. It is important that energy modeling is cost-effective which 

implies finding a balance between the model accuracy and the simulation aim (including 

allocated time frame and money expenditure). Depending on the scope and goal of 

energy modeling (why), different energy modeling techniques should be adopted. During 

the conceptual design process, simple tools should be sufficient, enabling relatively 

simple estimation of energy consumption for a certain building type (residential, non-

residential) and archetypal user profiles (students, family, elderly). In the final design 

stage, more time-consuming and expensive energy complex software tools should be 

used in order to increase the accuracy level of energy use prediction.  

Moreover, depending on the building scale, different levels of simulation complexity are 

needed. As described by Gaetani, Hoes, and Hensen (2016), a more detailed and 

complex simulation model is needed when energy usage for a single building is 

assessed (design/retrofit). However, using complex tools is not necessarily justified 

when doing a simple estimation of energy use for a number of buildings in a residential 

district. Furthermore, a larger error might be obtained when performing simulations 

where the design parameters are not defined (but instead using the default values) 

compared to when using simplified methods (rule of thumb or benchmarking). For a 

single building, occupant behavior needs to be more carefully modeled whereas when 

predicting energy usage of a multi-building district (residential area), several other 

factors will influence the total energy use, and therefore detailed and complex modeling 

of user behavior is not necessarily efficient. Certain occupation profiles and scenarios 

can be used to estimate an average building usage for that specific area (and can be 

based on benchmarking).  

Overall, the simulation user should choose and critically justify the model complexity and 

the technique for each individually investigated case. By defining clear objectives for 

each case, the risk of applying inappropriately complex and time-consuming models is 

avoided.  
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3. How to support decision making in 

different building project phases 

Occupant behavior modeling applications belong to specific project phases, governing 
standards, locations and climates, building designs, vintages, and uses. The Royal 
Institute of British Architects (RIBA), Honorarordnung für Architekten und Ingenieure 
(HOAI), International Federation of Consulting Engineers (FIDIC), and Australian Institute of 
Architects are among the professional organizations that have developed standardized 
project phase definitions. A brief comparison provides a basis for the definition of phases 
to be used in this document.  

 
In most countries it is the professional bodies that propose subdivisions of the building 

process into separate stages to clarify responsibilities, deliverables, liabilities and fee 

structures. Table 1 provides an overview of the different project stages as defined by the 

Royal British Institute of Architects, the American Institute of Architects, and the 

Australian Institute of Architects. It is evident that the overall content of a building 

process is similar in the three countries, and is likely to be similar in countries not listed 

in the table. What appears to be country-specific, however, is how the overall building 

process is subdivided into different project phases. This is likely to be due to differences 

in country specific building culture, legal and educational systems (Guy and Shove 2000, 

BDA document). For the purpose of simplification and applicability in countries not 

mentioned in the table, the last column makes a suggestion how the different country-

specific project stages can be summarized into four main phases.  

These phases have been established with regard to their relevance to different aspects 

of occupant behavior in buildings. The early design phase describes the part of the 

building process where the written or orally presented design brief is analysed and 

translated into a visual “design narrative” in sketch format that captures the essential 

characteristics of the proposed building. Depending on the specific project, parameters 

such as the degree of open vs. closed, indoor vs. outdoor, transparent vs. opaque, light 

vs. heavy, may be determined at this stage. These parameters are determined at a 

degree of accuracy sufficient to describe the atmosphere and attitude of the project, but 

are often not to scale, dimensions not determined and systems and their functionality not 

defined (Roetzel 2015). Once these qualitative decisions have been made, the following 

phase of “developed design” develops the sketch design into a set of construction 

drawings that can be provided to the builder, with detailed specifications about 

dimensions, materials and functionality of systems and controls (Roetzel 2015). The 

following construction phase then turns the set of drawings into the physical construction. 

This is followed by the last phase where the built environment professions such as 

architects are commonly involved, the handover and operation of the building. While in 

many countries architects and structural engineers remain liable for 30 years or more, 

they are commonly not involved in the operational phase and rarely receive feedback 

such as from post-occupancy evaluation. 
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Table 1: Sequential stages of a building’s design process. 

Stages from 
first to last in 

sequence 

Royal Insitute of 
British Architects 

(RIBA)* 

Australian Institute of 
Architects (AIA)** 

American Institute of 
Architects (AIA)*** 

Simplified 
summary of 

stages 

1 Strategic definition Development of Design 
Brief 

Schematic design phase Early Design 

2 Preparation and brief 

3 Concept design Design phase (analysis of 
the brief and sketch design) 

Design Development phase 

4 Developed design Design development, 
documentation and building 

approvals 

Construction document 
phase 

Developed 
design 

5 Technical design Bid or negotiation phase 

6 construction Construction 
 

Construction phase Construction 

7 Handover and Close 
out 

 
Defects liability period 

 Handover 
and 

operation 8 In use  

* https://www.ribaplanofwork.com/PlanOfWork.aspx 

** http://architecture.com.au/architecture/national/becoming-an-architect 

*** http://www.areforum.org/up/Construction%20Documents%20and%20Services/D200.pdf 

In order to establish how decision making around the impact of occupant behavior can 

be supported in these different stages, Table 2 uses the project phases established in 

Table 1 and summarises the stakeholders related to each phase as derived from the 

description of responsibilities by the American, British and Australian Institute of 

Architects. In addition to that, the types of decisions made at each stage and how they 

are likely to have an impact on occupant behavior are identified.  

  

https://www.ribaplanofwork.com/PlanOfWork.aspx
http://architecture.com.au/architecture/national/becoming-an-architect
http://www.areforum.org/up/Construction%20Documents%20and%20Services/D200.pdf
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Table 2: Stakeholders and decisions made in four main design phases. 

Phase Main stakeholders 
involved 

Key decisions made Impact of decisions on occupant behavior 

 
 
 
 
 
 
 

Early Design 

Client Budget Predefines all other parameters, excludes options that exceed budget 

Architect and client Design narrative, 
attitude and 
atmosphere 

 
 

Basic volumetric and spatial characteristics, e.g., degree of open vs. 
closed, indoor vs. outdoor, transparent vs. opaque, light vs. heavy. 

Predefines thermal properties of the building envelope, magnitude of 
solar heat gains and façade properties. 

Architect and client, 
specialist consultants 

Basic volumetric 
geometry (building 
depth and height) 

Predefines potential for cross and stack ventilation, predefines 
percentage of building that can be lit by daylight (indirect impact on 

lighting control) 

Architect and client Spatial relationships Predefines size of spaces and their location towards another. 
Predefines systems dimensioning, and control opportunities as well as 

group dynamics around the use of building controls 

 
 
 
 
 
 
 
 
 
 

Developed 
design 

Architect, client, builder, 
building authorities 

(permits), building services 
engineers and specialist 

consultants 

Building services 
systems (ventilation, 

heating, cooling, 
lighting systems) 

Predefines use of controls 

Building services 
controls (complexity, 

accessibility) 

Predefines use of controls 

Façade typology,  
window opening type 

Predefines availability and use of natural ventilation 

Shading systems Predefines control of shading 

Interior fitout 
(materiality and 

acoustic properties) 

Predefines space usage 

Construction Architect, builder Adherence to the 
design and quality of 

construction 
n/a as all decisions are 

specified in the 
previous phase 

Only applicable if changes are made during the construction phase 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Handover and 
Operation 

building operator,  building 
occupants 

Type and use of office 
equipment 

Predefines internal heat loads, indirectly influences use of conditioning 
systems 

facilities manager, building 
operator 

State of systems 
maintenance 

Predefines IAQ and use of systems and controls 

Facilities manager, building 
operator24 

Type of systems Predefines IAQ and use of systems and controls 

Building occupants Group dynamics Influences occupant interaction and use of controls 

Building occupants Personal attitude Influences occupant interaction and use of controls 

Building operator,  building 
occupants 

Furnishing and 
occupant density 

Influences the amount of occupants who have access to control 
systems 
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4. Supporting decision making through 

occupant behavior modeling and 

energy simulation 

Based on the categorization discussed in previous pages, modelers can choose 

appropriate occupant behavior modeling strategies based on an inventory of associated 

profiles. These associated profiles group together cases sharing similar building and 

occupant characteristics, where occupant behavior can be expected to have a similar 

effect on energy usage. Figure 5 shows a recent profile development effort. Through 

statistical analysis, different diversity profiles can be created for different categories (type 

of occupants, type of building etc.) for each design stage. For early design stages, rules 

of thumb (representing the central tendency in the distribution) or simplified models 

(identifying just a few categories) are likely the most plausible ways to support decision-

making. In the developed design stage, more rigor may be warranted.  

In general, such an inventory helps analysts to choose the most appropriate modeling 

technique (appropriate level of complexity in occupant behavior modeling) and allows 

basic determination of the correlation between the occupants and energy usage. For 

example, Samuelson, Ghorayshi, and Reinhart (2016) show when calibration matters for 

substantially reducing errors relative to the incremental cost of performing careful 

calibration. Similarly, D’Oca, Corgnati, and Hong (2015) show the potential for 

knowledge discovery in databases in order to create an occupancy-schedule learning 

framework.  

It also may be useful to provide such information to the occupants so that they 

understand how their behavior affects the building’s energy consumption. This could 

trigger the users to start behaving in a more energy-efficient way.  

 

Figure 5: Different types of buildings for occupant behavior study (the arrows indicate that the location 

can vary) (Ahn and Park 2016) 
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5. Conclusions and future needs 

The development of a framework for classifying applications of occupant behavior 

modeling is an important and ongoing task. A better framework will allow users to match 

models to applications more effectively, achieving a “fit for purpose” modeling standard. 

The case studies summarized in the appendix provide a wealth of illustrations of 

occupant behavior modeling applications. Tables 3 and 4 summarize the case studies 

presented in this report. 

Table 3. Overview of case studies 

Lifecycle Research focus Relation to behavior* Building 
type 

Country Case 
study 

Design Impact on space heating Impacts Residential China 13 

Design Impact on AC energy use Impacts Residential China 15 

Operation Occupant satisfaction Drivers/Systems/Impacts Office USA 1 

Operation Building performance Drivers/Systems Mixed USA 2 

Operation Impact on energy use Drivers/Impacts Office USA 3 

Operation Response to load shedding Actions Office USA 6 

Operation Modeling behavior Actions/Impacts Office USA 5 

Operation Occupancy data mining Actions Office USA 7 

Operation Occupancy prediction Actions Residential USA 8 

Operation Impact on energy use Actions/Impacts Office USA 9 

Operation Impact on energy use Actions/Impacts Office USA 10 

Operation Lighting control Actions/Impacts Office USA 11 

Operation Energy behavior drivers Drivers/Actions/Impacts Residential China 16 

Operation Energy use prediction Impacts Residential China 17 

Operation Energy saving operations Actions/Impacts Residential China 18 

Operation Energy behavioral change Drivers/Impacts Residential China 19 

Operation Energy behavioral change Drivers/Impacts Educational China 20 

Operation Air-conditioning system Actions/Systems/Impacts Educational Singapore  21 

Operation Occupants' thermal comfort  Drivers Office Singapore  22 

Operation Impact on energy use Impacts Office Singapore  23 

Operation Impact on energy use Drivers/Impacts Laboratory South Korea 24 

Operation Impact on energy use Impacts Residential Italy 25 

Operation Impact on energy use Drivers/Impacts Office Italy 26 

Operation Window opening behavior Actions/Impacts Office Germany 27 

Operation Impact on energy use Impacts Office Netherlands 28 

Operation Occupancy-based energy usage Actions/Impacts Office Finland 29 

Operation Blinds movements Actions/Impacts Office Switzerland 30 

Operation Building performance assessment Drivers/Systems Office Hungary 31 

Operation Occupancy prediction Actions Office Denmark 32 

Retrofit Behaviors to energy-saving retrofit Actions/Impacts Office USA 4 

Retrofit Rebound effect of behaviors Impacts Educational USA 12 

Retrofit Control behavior of heat pump Actions/Impacts Residential China 14 

Note: Drivers refer to environment, comfort, psychology and economy factors that impact occupant behavior; 
Actions refer to occupant movement and actions such as blind operation; Systems refer to building systems such 
as HVAC; Impacts refer to the impacts of occupant behaviors on various dimensions of buildings such as energy 
usage  
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Table 4a. Comparison of case studies 

Case studies Case study 1 Case study 2 Case study 3 Case study 4 Case study 5 Case study 6 Case study 7 

Contributors  Jennifer Senick, Clinton 
J. Andrews, Maren L. 
Haus, Richard Wener, 
Michael Kornitas, Mark 

Bolen, Pinky Samat, 
UtaKrogmann, and 

Francis Jordan. 

Jennifer Senick, Clinton 
J. Andrews, Maren L. 
Haus, Richard Wener, 
Michael Kornitas, Mark 

Bolen, Pinky Samat, 
Francis Jordan, Deborah 
Plotnik, and Gavin Kwak 

Jennifer Senick, Clinton 
J. Andrews, MaryAnn 
Sorensen Allacci and 

Richard Wener 

 Jennifer Senick, 
Richard Wener, Irina 
Feygina, MaryAnn 

Sorensen Allacci, and 
Clinton J. Andrews 

Steven Malenchak, 
MaryAnn Sorensen 

Allacci, and Clinton J. 
Andrews 

Marcelo Figueroa, Handi 
Chandra Putra, and 
Clinton J. Andrews 

Jie Zhao and Khee Poh 
Lam 

Location Camden, New Jersey, 
USA 

Maplewood, New 
Jersey, USA 

Philadelphia, USA Philadelphia, USA Philadelphia, USA Philadelphia, USA Pittsburgh PA, USA 

Period 2009-2010 2009 - 2010 2011 2012 2013 2014 2013 - 2015 

Objectives Occupant comfort and 
satisfaction 

Building performance, 
occupant satisfaction 

and cost  

Effect of occupant 
behavior on energy use 

Occupant response to 
energy saving 

technologies and load 
shedding in a workplace 

Evaluation of occupant 
behavior during load 

shedding 

Learn the impact of 
incorporating occupant 

behavior in building 
energy models 

Learn occupancy from 
power data 

Building name Waterfront Technology 
Center  

Maplewood police and 
court building 

Navy Yard N.A. N.A. Building 101, Navy Yard Phipps Center for 
Sustainable Landscapes 

Building type Office Mixed Multi-tenant office Multiple types (i.e. office, 
laboratory, research and 

technical shops) 

Office Office multi-tenanted Office 

Building size 9125 m2 3888 m2 7093 m2 Building 1: 7125 m2; 
Building 2: 70191 m2 

N.A. 6982 m2 2137 m2 

Owner type Quasi - governmental Municipal/government Liberty property trust/ 
public 

Real estate investment 
trust/public 

Liberty property trust/ 
public 

Philadelphia Industrial 
Development 
Corporation 

NGO 

Occupant type Office workers Police and municipal 
court 

Office workers Office workers Office workers Office workers Office workers 

Data collected N.A. Indoor environmental 
quality; occupant 

satisfaction 

Occupant behavior; 
Assessment of 

occupant's perception, 
satisfaction and use of 

the buildings 

Electrical consumption 
by HVAC and lighting; 
building system data 
including HVAC and 

lighting systems; 
enviornmental data 
including Air flow, 
temperature, light 

Building system data 
including HVAC and 

lighting systems 

Plug load metering data; 
Site environmental 

conditions; Occupancy 
schedule 

Power consumptions of 
office equipment; 

Occupant data including 
Fitbit, keyboard and 

mouse usage. 

Models & 
Analytics 

N.A. Life cycle cost analysis Life cycle cost analysis N.A. Regression analysis Energy Plus simulation Data mining algorithms 
and Energy plus 

simulation 

Primary 
Contact 

Clinton Andrews, 
Rutgers University. 

Email: 
clintonjandrews@gmail.

com 

Clinton Andrews, 
Rutgers University. 

Email: 
clintonjandrews@gmail.

com 

Clinton Andrews, 
Rutgers University. 

Email: 
clintonjandrews@gmail.

com 

Clinton Andrews, 
Rutgers University. 

Email: 
clintonjandrews@gmail.

com 

Clinton Andrews, 
Rutgers University. 

Email: 
clintonjandrews@gmail.

com 

Clinton Andrews, 
Rutgers University. 

Email: 
clintonjandrews@gmail.

com 

Jie Zhao, Delos. Email: 
jie.zhao@delos.com 
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Table 4b. Comparison of case studies 

 

Case studies Case study 15 Case study 16 Case study 17 Case study 18 Case study 19 Case study 20 Case study 21 

Contributors Chuang WANG Yilong Han and Yujie Lu  Meng Shen and Yujie Lu  Simon Tsui and Allen 
Yui 

Simon Lam, Gary 
Chiang and Joe Lo 

Elizabeth Hio Wa LAI Lynette Cheah, and 
Stephen Ross 

Location Beijing, China Hangzhou, China Hangzhou, China Hong Kong, China Hong Kong, China Hong Kong, China Singapore 

Period 2015 2016-2017 2016-2017 2014 2016 2016-17 2014 

Objectives Influence of occupant 
behavior pattern on air 

conditioning energy 
consumption  in 

residential buildings

Effectiveness of 
intervention to change 

occupant behavior 

Energy Prediction Under 
Behavioral Intervention 

Strategies 

Quantifying impacts on 
energy reduction with 

energy forecast 
facilitates 

Quantifying energy 
savings among similar 

size households as 
drivers of behavioral 

changes 

Impact of visualizing 
energy usage in Hong 
Kong primary schools 

Characterizing user 
behavior and user-

preferences for 
uncertainty 

quantification in the life 
cycle assessment of air 
conditioning systems 

Building name N.A. 240 residential 
apartments in three local 

communities, close to 
city suburban 

240 residential 
apartments in three local 

communities, close to 
city suburban 

Park Island 300,000 households 10 local primary schools  University building 

Building type Residential residential residential Residential (Club house) Residential School office 

Building size 1764 m2 240 houses 240 houses 500,000 sf Apartments for 
~300,000 households 

10 local primary schools 
with more than 6000 

students in total 

N.A. 

Owner type Resident private residence private residence Park Island tenants Residence Primary schools University 

Occupant type Residents residents residents Club house exclusive 
use by tenants 

CLP's residential 
customers (Eco Power 

360 users) 

Primary school students university staff 

Data collected Building energy 
consumption; Building 
envelope properties; 
Cooling season data; 
Occupants' behavior 

patterns. 

monthly home energy 
consumption; outdoor 
climate data; occupant 
behavior measurement 

data including the 
frequency of using 

different appliances; 
Occupants' personality, 
quality of life, attitude, 

and intentions of energy 
conservation 

monthly home energy 
consumption; outdoor 
climate data; occupant 
behavior measurement 

data including the 
frequency of using 

different appliances; 
Occupants' personality, 
quality of life, attitude, 

and intentions of energy 
conservation 

Electricity consumption 
measured by electric 

meters; Outdoor 
temperature and 
humidity data; 

Occupants' behavioral 
changes affected by 

online energy feedback 

Electricity consumption 
measured by electric 

meters; Outdoor 
temperature; Behavioral 

changes affected by 
forcasted energy bills. 

Electricity consumption - 
electric  meters and add-

on sub metering; 
Outdoor temperature; 

Occupants behavour of 
two school groups. 

Air conditioning energy 
consumption; Air 

conditioning usage data 
at 5-minute resolution; 

Environmental data 
including indoor 

temperature, humidity, 
light intensity, and noise; 
Number of occupancy.  

Models & 
Analytics 

Weibull distribution 
based simulation 

Difference-in-difference 
analysis 

Machine learning 
algorithm 

N.A. N.A. N.A. Life cycle analysis 

Primary 
Contact 

Chuang Wang, 
Tsinghua University. 

Email: 
Wangchuang02@mails.t

singhua.edu.cn 

Yujie Lu, National 
University of Singapore 

(NUS). Email: 
luy@nus.edu.sg 

Yujie Lu, National 
University of Singapore 

(NUS). Email: 
luy@nus.edu.sg 

Simon Tsui, CLP Power 
Hong Kong Limited. 

Email: 
simontsui@clp.com.hk 

Simon Lam, CLP. Email: 
simonlam@clp.com.hk 

Elizabeth Lai, 
Reconnect Limited. 

Email: 
elai@reconnect.org.hk 

Lynette Cheah. 
Singapore University of 
Technology and Design. 

Email: 
lynette_cheah@sutd.ed

u.sg 
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Table 4c. Comparison of case studies 

Case studies Case study 22 Case study 23 Case study 24 Case study 25 Case study 26 Case study 27 Case study 28 

Contributors Stephen Siu Yu LAU,  
and Ji ZHANG 

Ruidong Chang and 
Yujie Lu  

Cheol Soo Park and Ki 
Uhn Ahn 

Anna Laura Pisello Cristina Piselli and Anna 
Laura Pisello 

Karin Schakib-Ekbatan, 
Marcel Schweiker, and 

Andreas Wagner  

Ad van der Aa, Cristina 
Jurado López, and Bas 

Giskes 

Location Singapore Singapore Sungkyunkwan 
University, Suwon, 

South Korea 

Perugia, Italy Perugia, Italy Frankfurt, Germany The Netherlands 

Period 2015 2017 2015 2010-2017 2015-2017 2004-2009 2010-2017 

Objectives Learn thermal comfort Occupant behavior 
simulation and energy 

consumption 

Correlation between 
occupants and energy 

consumption 

To analyze indoor 
occupancy of residential 
under-occupied single-

family buildings 

Comparison between 
monitored and simulated 
occupants behavior and 

energy consumption 

Monitoring of energy 
performance and 
window opening 

behavior in a German 
office building 

The Influence of 
Occupant Behavior on 

the Total Energy 
Consumption in Offices 

Building name Multiple buildings within 
National University of 
Singapore campus 

BCA Academic tower Sungkyunkwan 
University Campus 

house in Perugia CIRIAF research center office building ABT office 

Building type Office Office Laboratory residential office office building office 

Building size N.A.  1944 m2 26.7 m2 513 m2 1808 m2 8585 m2 2040m2 

Owner type Public public agency University Private University private private 

Occupant type Users of different types 
of learning spaces  

office workers Graduate students residential researchers/professors office workers office workers 

Data collected On-site measurement of 
environmental 
parameters; 

questionnaire interview 
of leaning space users.  

Floor level total energy 
consumption, plug load 

consumption, and HVAC 
consumption; occupant 
behavior data measured 

by onsite sensor with 
calibration; survey data 
on occupant behavior. 

Electric power 
consumption of EHP 

and personal heaters; 
Building window and 
door opening ratio; 

Outdoor air temperature, 
indoor air temperature 

and  CO2 level; Number 
of occupants; 

Measurement of actions 
such as opening a 
window, door and 
controlling EHP. 

Energy bills about 
natural gas for heating 

and HWP, and electricity 
for lighting, equipment 
and cooling; Building 
envelope and energy 

systems; Outdoor 
weather data and indoor 

microclimate data 
measured by subhourly 

monitoring stations; 
Number, types of 

occupants and their 
behaviors; Survey data 
on occupant behavior. 

Sub-hourly power 
consumptions of office 
equipment, HVAC and 
lighting Electrical bills; 

Building envelope, 
window and door 
opening ratio, and 

energy systems data; 
subhourly outdoor 

weather data measured 
by rooftop monitoring 

station, and indoor 
subhourly monitored air 
quality and illuminance; 

Number and type of 
occupants and their 

behaviors;  Survey data 
on occupant behavior. 

Zonal electricity 
consumption per 10 

minutes; Building 
window status; 

Environmental data 
including zonal indoor 

air and surface 
temperatures, CO2 

concentrations, outdoor 
solar radiation, light 

intensities, temperature, 
relative humidity, wind, 
CO2 concentration, and 

rain amounts; Zonal 
occupancy, and their 
operation of windows, 

blinds, and lights. 

Monitored and simulated 
heating, cooling, and 

plugload energy 
consumption; building 

envelop characteristics, 
lightning zonings, HVAC 
schedual, and thermal 

zoning; indoor 
temperature data; 

Number of occupancy.  

Models & 
Analytics 

N.A.  Regression analysis Correlation analysis DesignBuilder simulation Simulation analysis Logistic regression and 
classification algorithms 

Energy plus simulation 

Primary Contact Stephen S Y Lau, 
National University of 

Singapore (NUS). Email: 
akilssy@nus.edu.sg 

Yujie Lu, National 
University of Singapore 

(NUS). Email: 
luy@nus.edu.sg 

Cheol Soo Park, 
Sungkyunkwan 

University. Email: 
cheolspark@skku.ac.kr 

Anna Laura Pisello, 
University of Perugia. 

Email: 
anna.pisello@unipg.it 

Cristina Piselli, 
University of Perugia. 

Email: 
cristina.piselli@ingpec.e

u 

Marcel Schweiker. 
Karlsruhe Institute of 
Technology. Email: 

marcel.schweiker@kit.e
du 

Ad van der Aa, ABT. 
Email: a.vd.aa@abt.eu 



 

17 

 

Table 4d. Comparison of case studies 

  

Case studies Case study 29 Case study 30 Case study 31 Case study 32 

Contributors Ken Dooley Bernard PAULE, Juline BOUTILLIER, 
and Samuel PANTET 

Zsofia Belafi, Tianzhen Hong, Andras 
Reith, and Kornel Dome Deme 

Fisayo Caleb Sangogboye, Kenan 
Imamovic, and Mikkel Baun Kjærgaard 

Location Helsinki, Finland EPFL Innovation Park, Switzerland Budapest, Hungary Odense and Vejle, Denmark 

Period 2011 - 2016 2013 - 2014 2014 - 2015 2015 

Objectives Normalize consumption by occupancy Compare benefits of automatic and 
manual blinds control 

Diagnose energy and comfort Predict time-series occupancy 

Building name N.A. EPFL Innovation Park N.A. University of Southern Denmark & Green 
Tech Centre 

Building type Office Office Office Office 

Building size 6990m2 N.A. 6503 m2 2500 & 4000 m2 

Owner type Private Public Private Public and private 

Occupant type Office workers Office workers Office workers Office workers 

Data collected N.A. Building system data including blinds 
position 

Electricity and natural gas sub metering 
data; Building system data including 
HVAC set points and valve status; 

Environmental data including outdoor 
temperature, radiation and indoor 

thermographic; BMS occupancy data 
and measurement of occupants' thermal 
comfort;Comfort and occupant behavior 
survey, walk-through observation and 

interview data. 

BAS occupancy data 

Models & Analytics Normalization analysis Simulation analysis IDA ICE simulation Multi-label classification algorithms 

Primary Contact Ken Dooley, Granlund. Email: 
ken.dooley@granlund.fi  

Bernard Paule, Estia SA. Email: 
bernard.paule@epfl.ch 

Zsofia Belafi, ABUD. Email: 
belafi.zsofia@gmail.com 

Mikkel Baun Kjærgaard, University of 
Southern Denmark. Email: 

mbkj@mmmi.sdu.dk 
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7. Appendix: Case Studies 

Case 1 

Case study title 

Occupant comfort and satisfaction performance of energy and water consumption in the 

NJ Economic Development Authority Building  

 

Contributors 

 Jennifer Senick, Clinton J. Andrews, Maren L. Haus: Rutgers Center for Green 

Building, Rutgers University, NJ, USA 

 Richard Wener: Polytechnic Institute of NYU, NY, USA  

 Michael Kornitas: Energy Conservation Manager, Rutgers University, NJ, USA  

 Mark Bolen, Pinky Samat:  Rutgers Center for Green Building, Rutgers 

University, NJ, USA 

 UtaKrogmann and Francis Jordan: Department of Environmental Sciences, 

Rutgers University, NJ, USA  

 

Contribute to other subtasks 

 Subtask C: Occupant action models in commercial buildings 

 Subtask E: Applications in building design and operations 

 

When and where 

2009-2010, NJ Economic Development Authority’s (NJEDA) Waterfront Technology 

Center, Camden, NJ, USA 

 

Building(s) description 

 Owner type: quasi-governmental 

 Building type: Business, Office, Commercial-multi tenanted  

 Total floor area: 98,225 sf 

 Number of stories: 5-story 

 Location (city, country): Camden, NJ, USA 

 One or two pictures: 
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Tech Center Building; Source: Ballinger                        Entrance lobby; Source: Ballinger 

 

Occupant type 

Workers with varying space needs (from larger build-to-suit tenants to smaller suites for 

multi-tenants who would share amenities  

 

Methods and Data 

The following outline illustrates the phases and actions endeavored by the Rutgers 

Center for Green Building for conducting a POE (Post Occupancy Evaluation) on the 

NJEDA Tech Center. 

Phase 1: Baseline Research  

o Building Owner Interview -reviewed overall project details, responsibilities, and 

expectations. 

o Design, Construction, Engineering Team Interview - reviewed green features 

and performance expectations. 

o Facility Manager Interview - gathered detailed information about the building 

and FM practices; also used RCGB instruments including an online survey and 

Building Performance Evaluation (BPE) tool that  helps to gather quantitative data 

in such areas as energy, water, building cost and waste.    

o Tenant Representative Walk-through and Project Briefing – toured some 

tenant facilities and explained the study. Solicited tenant participation.   

As a result of this step, the study team identified an opportunity to conduct a 

comparative case study, within the overall study, that would seek to assess similarities 

and differences in occupant satisfaction. For example, two participating tenants are 

located on the same side  of the building and share a similar line of, but have different 

office layouts (open-collaborative vs. private-cubicles) which we hypothesize may affect 

occupant satisfaction in terms of lighting, acoustics, temperature, etc.  

o Follow-up Visit – the purpose of the second visit was to formalize tenant 

participation in the study.  During this interview the tenant representatives also 

provided specific information on usage patterns and occupant habits and agreed 

to have occupant-employees participate in an online survey and follow-up 

surveys and/or focus groups.  
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o Background Survey - gathered background information about the occupants 

and their attitude to, and experience of, the building through a brief (10 minute) 

online survey.  

 Rutgers worked with the tenant representative to come up with a communication 

plan and timeline for inviting occupants to participate in the online survey. An 

email invitation was sent inviting occupants to participate in the study and they 

were given two weeks to complete the survey. Incentives were used to 

encourage participation in the survey (e.g., drawings for a gift certificate to a local 

restaurant).  

o Building Performance Data Analysis –performed energy and water analysis 

and benchmarking and a life cycle cost and infrastructure cost analysis. 

o Survey Analysis – analyzed and produced the results of the occupant surveys. 

o Case Study Write-up – completed this draft case study write-up. 

 

Phase 2: Follow-up Research (for consideration under a different grant, from the 

USGBC) 

o Semi-/Annual Facility Manager Interview - review utility bills, real-time 

monitoring results, and repeat/expand participating occupants for survey 

- In conjunction with the online survey, the team re-interviewed the facility manager 

(third site visit) and set up the data logging procedure to collect ongoing data in one 

hour increments on: Indoor temperature, temperature set points, outdoor air 

temperature, relative humidity (outdoor and at air handling units), carbon dioxide 

levels, peak and non-peak hours of the HVAC equipment.  Unfortunately, RCGB has 

been unable to attain this data as it seems the facility manager either cannot or will 

not provide it. 

o Occupant Focus Group(s)–occupant focus groups could be used to more finely 

discern results of the occupant survey(s) 

 

o Additional Occupant Surveys (optional) – collect additional feedback on 

occupant satisfaction and behavior.  

 

Data and models availability 

Data and/or models are available to Annex 66 participants. Reports, models, and 

anonymized data are freely available for download at greenbuilding.rutgers.edu. Please 

cite this source if you use it.  

 

Summary  

This case study analyzes physical performance measures in areas like energy and water 

consumption, and construction and operation costs, and survey work in the areas of 

occupant comfort and satisfaction.  

Our conclusion as to the role of designing the Tech Center is that the green features did 

what they were expected to do for electricity use, but were less successful in limiting 

natural gas use. Factors that may account for the mixed performance we report include 
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a series of design choices relating to the need to maintain optimal performance under 

partial load conditions.  Yet, the actual natural gas usage of the building is higher than 

expected. Additionally, this building, which has a large outdoor air requirement because 

it houses potential laboratory, includes a heat recovery system to offset the increased 

heating and cooling loads. The actual building performance suggests that the heat 

recovery system is performing less well than intended in the design.  We speculate that 

the outside air may be oversized for current use even while it may play a positive role in 

occupant satisfaction with building indoor air quality.  The heat recovery wheel, which is 

intended to offset the energy penalty of these fresh air demands, seems not to be off-

setting as much natural gas use as anticipated.  This is an area that needs further study, 

as an instance of a more general challenge.   

Design decisions that appear to have benefited building electricity performance include 

lighting and HVAC features.  In addition, the building orientation (long axis east to west) 

in combination with sunscreen systems on the south and west elevations should 

facilitate reduced heating and cooling loads, as should the light-colored roof (cooling).  

In terms of operating practice, we observe that the NJEDA has undertaken a number of 

measures to benefit the performance of the Tech Center.  These include the building 

commissioning plan that was implemented successfully in five phases – planning, 

design, construction, acceptance and post-acceptance.  Additionally, NJEDA achieved 

LEED-CI certification for its tenant fit-outs. And yet, it appears that there is more work to 

be done in promoting the benefits of green building to tenants.  Making a further 

investment in the building’s landscaping and perimeter and/or explaining the nature of 

xeriscaping might also lead to higher levels of overall satisfaction among occupants. 

Additionally, when training of maintenance staff is done that as a part of commissioning, 

the tenants are informed of the enhancements that are made and their role in 

maintaining these sustainable enhancements. 

By way of context, green buildings have demonstrated performance levels that range 

from 25% below to 30% above predicted energy savings. The authors note that 

variations in results are likely to come from construction changes, equipment 

performance and difference in operational practices. This study demonstrates that all 

three of these factors are in play in considering the performance of the NJEDA Tech 

Center. 

 

Key Findings 

Building Operating Performance 

 Energy Usage: This building outperforms conventional buildings but falls short of 

its intended level of performance. The results speak to the complexity of 

understanding the performance of a multi-tenanted building which is taking a long 

time to reach full occupancy. Once tenants are fully established, it will be worth 

revisiting their patterns of energy and water usage. 

 Water Usage: For the most part water use in the Tech Center is at the same 

level of magnitude as the LEED design case. However, a more accurate 

determination of the number of regular occupants is needed for a more accurate 
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comparison between the predictions for the LEED design case and actual water 

consumption. 

 

 

 

Life Cycle Performance 

 Life Cycle Cost (LCC): When compared to the budget case modeled building, 

the reduced energy consumption of the as-built Tech Center results in a positive 

Net Present Value (NPV) relative to both the design and budget cases. 

 Avoided Infrastructure Analysis – Energy and Water: We find that typical new 

buildings are more electricity intensive than the typical existing building, while the 

natural gas intensity is slightly less, and overall energy intensity is about the 

same. Regarding water, the typical new green building uses less water than the 

typical new conventional building, as is the case with the Tech Center. 

Building Occupant Satisfaction and Performance  

 Occupant Survey Results: This facility is viewed very positively, overall, by the 

limited number of people who completed the survey. A very high degree of 

satisfaction was expressed about the overall design and appearance of the 

environment, building views and with the quality of indoor air. There were also 

some specific areas of concern, namely exterior landscaping, privacy, noise, and 

thermal comfort.  In addition, many respondents were dissatisfied with the 

location or convenience of recycling containers.   

 

Related publications 

 Senick, J., Andrews, C.J., Haus, M.L., Wener, R., Kornitas, M., Bolen, M., Samat, P., 

Krogmann, U. and Jordan, F. “Waterfront Technology Center Study: A New Jersey 

Economic Development Authority Building”. Prepared by Rutgers Center for Green 

Building for USGBC – NJ Chapter. 2011. At http://rcgb.rutgers.edu/wp-

content/uploads/2013/10/EDA_FINAL.pdf 

 

  

http://rcgb.rutgers.edu/wp-content/uploads/2013/10/EDA_FINAL.pdf
http://rcgb.rutgers.edu/wp-content/uploads/2013/10/EDA_FINAL.pdf
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Case 2 

Case study title 

Maplewood Police and Court Building: A Post Occupancy Evaluation 

 

Contributors 

 Jennifer Senick, Clinton J. Andrews, Maren L. Haus: Rutgers Center for Green 

Building, Rutgers University, NJ, USA  

 Richard Wener: Polytechnic Institute of NYU, NY, USA 

 Michael Kornitas: Energy Conservation Manager, Rutgers University, NJ, USA  

 Mark Bolen, Pinky Samat: Rutgers Center for Green Building, Rutgers University, 

NJ, USA  

 Francis Jordan: Department of Environmental Sciences, Rutgers University, NJ, 

USA  

 Deborah Plotnik: Rutgers Center for Green Building, Rutgers University, NJ, USA  

 and Gavin Kwak:  Polytechnic Institute of NYU, NY, USA 

 

Contribute to other subtasks 

 Subtask C: Occupant action models in commercial buildings 

 Subtask E: Applications in building design and operations 

When and where 

2009-2010, Maplewood Police and Court Building, Maplewood, NJ, USA 

 

Building(s) description 

 Owner type: municipal/government  

 Building type: Governmental building, including court, police, detention, office, 

public meeting areas and other facilities 

 Total floor area: 41,850 sf 

 Number of stories: 4-story including basement  

 Location (city, country): Maplewood, NJ, USA 

 One or two pictures: 

 

 

 

 

 

Maplewood Police and Court Building exterior. Source: Richard Wener 
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Occupant type 

 Police department, municipal court 

 

Methods and Data 

This study evaluates the Maplewood Police and Court Building on a variety of different 

parameters including environmental and economic performance, occupant satisfaction, 

and avoided infrastructure costs (post occupancy evaluation - POE). The following 

sections provide a detailed analysis of the objectives and outcomes of the Maplewood 

Police and Court Building from building performance and occupant – user and operator – 

points of view. 

 Descriptions of the building’s green features in seven major areas: Site Selection and 

Planning, Construction Management, Landscaping, Building Design, Building Materials, 

Building Systems, and Other Features.  

 Interviews and questionnaires with the building owner, design team, engineering 

team, facility manager, and others to gather information on energy and water use, indoor 

environmental quality, occupant satisfaction, and avoided infrastructure costs.  

Occupancy Satisfaction & Performance – Occupant Survey 

Information on occupant responses to this building come from a walk-through tour of the 

facility, individual and group interviews with key personnel including architect, facilities 

staff, police and court administrators, and patrol officers, and from a self-administered 

questionnaire distributed to all building personnel. Completed surveys were received 

from 25 persons representing both the police department and court personnel. This 

sample represents a cross-section of court and police staff, administrative, clerical and 

patrol officers, across all shifts, males and females, predominantly between 30 and 50 

years of age, most of whom have been on the job for 4 years or more. That said, it is 

important to note that is a small self-selected sample and therefore must be viewed as 

suggestive only; the results are most valuable when viewed in context of other 

observations.  

 Analysis of actual energy performance and economic assessment of the building 

through a Life Cycle Cost (LCC) analysis. 

Life Cycle Performance - Life Cycle Cost (LCC) Analysis 

To better understand the cost-effectiveness of the new Maplewood Police Station’s 

green features, we performed a Life Cycle Cost (LCC) analysis for the energy-related 

characteristics and equipment. LCC analysis considers the total costs associated with a 

building from its construction to its demolition. An LCC analysis is usually comparative, 

contrasting the as-built, green building with a conventional building or “budget” case. For 

each scenario, we collected utility consumption data and the capital costs for building 

features relating to energy consumption (electrical, HVAC, exterior walls, glazing, roof). 
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For the Maplewood Police Station, utility data and capital cost data were acquired from 

the township government and the architect, respectively. The costs for the budget case 

building are modeled using RSMeans CostWorks Online as well as industry-standard 

building costs, and have been reviewed by engineers and building consultants. Utility 

consumption estimates for the budget case building come from the energy modeling 

performed for the LEED submission. Once initial costs and energy consumption costs 

were obtained for the as-built and budget building designs, they were tabulated in an 

LCC spreadsheet adapted from one developed by the Rutgers Center for Green Building 

for prior projects. The budget case building was used as the “base” model for 

comparison purposes. All analyses are reported on a per-square-foot basis. Finally, we 

performed several sensitivity analyses. A sensitivity analysis examines the effect that 

different factors have on the relative NPVs of the represented projects. In this LCC 

analysis, there are three factors for which we ascribe variable values: future energy 

costs, the discount rate, and building lifespan. Future energy costs were set to 75% and 

150% of their projections from the DOE Annual Energy Outlook 2009. We use three 

different values for the discount rate. The primary NPV analysis uses a 7% discount rate 

– arguably pretty generous in today’s economic climate, while the low discount rate of 

4% represents the low point of the 30-year average mortgage rate with points from 

Freddie Mac during the recent recession. A more aggressive discount rate of 12% was 

also employed. Building lifespan for the primary NPV analysis is assumed to be 30 

years, and 15-year and 50-year lifespans are considered in the sensitivity analyses. 

Data and models availability 

Data and/or models are available to Annex 66 participants. Reports, models, and 

anonymized data are freely available for download at greenbuilding.rutgers.edu. Please 

cite this source if you use it.  

 

Summary 

This case study assessed the Maplewood Police and Court Building. This building was 

the 33rd LEED certified building in NJ and the first municipal building to be certified by 

the U.S. Green Building Council’s (USGBC) Leadership in Energy and Environmental 

Design (LEED) green building rating system. This study develops a synthesized analysis 

on physical performance measures in such areas as energy and water consumption, 

and construction and operation costs, and survey work in the areas of occupant comfort 

and satisfaction. This work includes the following:  

o Descriptions of the building’s green features in seven key areas: Site 

Selection and Planning, Construction Management, Landscaping, 

Building Design, Building Materials, Building Systems, and Other 

Features.  

o Interviews and questionnaires with the building owner, design team, 

engineering team, facility manager, and others to gather information on 

energy and water use, indoor environmental quality, occupant 

satisfaction, and avoided infrastructure costs.  
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o Analysis of actual energy performance and economic assessment of the 

building through a Life Cycle Cost (LCC) analysis. 

o Assessment of environmental impacts of energy and water use. 

The combination of the above research provides the basis for this case study write-up 

that evaluates building performance, occupant satisfaction and cost considerations.   

 

Key Findings 

 Daylighting is a valuable and appreciated feature but issues relating to glare that 

can impact productivity need to be addressed in architecture and interior design; 

 Decisions to make use of sophisticated HVAC and control systems need to 

consider the skill/training level, availability and cost of personnel needed to 

adequately maintain these systems; 

 There are concerns about the accuracy of energy use predictions that were part 

of the LEED submittal, which may suggest a broader issue about reliance on 

such models;  

 The life-cycle cost effectiveness of a green building is diminished if it suffers from 

an extended startup period of suboptimal performance; designing for partial and 

widely variable loads is a challenge of buildings like this and needs to be better 

addressed; 

 The financial viability of adding green features is not a given and in some cases 

depends heavily on financial subsidies, such as SRECs.  

 

Related publications 

 Senick, J., Andrews, C.J., Haus, M.L., Wener, R., Kornitas, M., Bolen, M., Samat, P., 

Jordan, F., Plotnik, D. and Kwak, G. “Maplewood Police and Court Building: A Post 

Occupancy Evaluation’. Prepared by Rutgers Center for Green Building for USGBC 

– NJ Chapter. 2010. At http://rcgb.rutgers.edu/wp-

content/uploads/2013/10/Maplewood-Police-final-4_6_11-rev.pdf 
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Case 3 

Case study title 

Energy Efficiency and Occupant Behavior-Greater Philadelphia Innovation Cluster 

(GPIC) for Energy-Efficient Buildings, a U.S. DOE Energy Innovation Hub Repository 

Case Study 

 

Contributors 

 Jennifer Senick, Clinton J. Andrews, MaryAnn Sorensen Allacci: Rutgers Center 

for Green Building, Rutgers University, NJ, USA  

 and Richard Wener: Polytechnic Institute of NYU, NY, USA 

 

Contribute to other subtasks 

 Subtask A: Occupant movement and presence models in buildings.  

 Subtask C: Occupant action models in commercial buildings 

 

When and where 

2011, Navy Yard, Philadelphia, PA, USA 

 

Building one description 

 Owner: Liberty Property Trust-real estate investment trust/public 

 Building type: multi-tenant office  

 Total floor area: 76,350 sf 

 Number of stories: 4 conditioned + 4-story day-lit atrium 

 Location (city, country): Philadelphia, PA, USA 

 One or two pictures: 

 



 

30 

 

 

 

Occupant type of building one 

 Typical office workers in a mix of open and private spaces with some ground 

floor retail 

 

Building two description 

 Owner type: Liberty Property Trust-real estate investment trust/public 

 Building type: multi-tenant office  

 Total floor area: 95,621 sf 

 Number of stories: 4 conditioned + 4-story day-lit atrium 

 Location (city, country): Philadelphia, PA, USA 

 One or two pictures: 

 

Occupant type of building two 

 Typical office workers in a mix of open and private spaces with some ground 

floor retail 

 

Methods 

Secondary Data 

 Review of Archival Sources: LEED Documentation, ENERGY STAR Portfolio 

Manager analyses, various consultant reports 

 Building Performance Evaluation- utility bill analysis and Building Automation 

System (BAS) sensor logs 

Primary Data 

 Walk-through observations of common spaces and a sample of tenant spaces in 

the two buildings 
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 Photo documentation of some of these spaces 

 Semi-structured interviews with: 

 design, construction and engineering team members, representatives of building 

developer/owner to review design intentions, performance expectations, and 

features aimed at energy efficiency 

 Facility Manager (FM) to gather detailed information about the building and FM 

practices 

 Tenant Representatives for a sample of occupied spaces to understand their 

expectations and views of the building and any specific office polices regarding 

energy use 

 Focus Groups of: 

 Tenant representatives (also a tenant recruitment strategy) 

 Office occupants for a sample of participating tenants 

 Survey of: 

 Building occupants to assess perceptions, satisfaction and use of the 

buildings such as may impact building energy performance 

 Facility manager in conjunction with a Building Performance Evaluation (BPE) 

tool to assist in gathering both quantitative and qualitative data in such areas 

as energy, water, building cost and waste 

 

Data and models availability 

Data and/or models are available to Annex 66 participants. Reports, models, and 

anonymized data are freely available for download at greenbuilding.rutgers.edu. Please 

cite this source if you use it.  

 

Summary  

Multi-tenanted buildings typically accommodate diverse groups of tenants with various 

energy needs, while additional complexity emerges from their interaction with building 

systems and design. Factors such as fragmented responsibilities/locus of control issues, 

split incentives along with inadequate flow of information, and other related issues, such 

as luck of coordination between building design and interior design each may be 

especially relevant to a multi-tenanted context, given its heterogeneous population. 

These factors can make energy management in multi-tenanted buildings highly 

challenging and help explain shortfalls in realization of building performance objectives. 

Conversely, successful resolution of those could lead to joint benefits for building 

developer/owners and tenants/occupants. 

These case studies investigate direct and indirect effects on energy use based on 

aspects as developer/owner requirements, building design and systems, construction 

outcomes, and building operator and occupant behavior.  They provide valuable insights 

into the challenges that confront the goal of achieving a 50% energy reduction in 

commercial buildings in the Greater Philadelphia region by 2014. Research design and 

methods are based on POE research and entail primary and secondary data collection 

via semi-structured interviews of tenants and members of the developer/owner team, an 
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occupant survey, building walk-throughs, focus groups, utility bill and building 

automation system sensor log analyses, and building performance benchmarking.  

 

Key Findings 

 Disconnect between core and shell design/construction and interior fit-out 

of tenanted spaces 

An alternative approach is needed that can simultaneously satisfy energy objectives and 

occupants workplace preferences. This could be accomplished through increased 

coordination between core and shell and interior fit-out in a manner that takes the 

mediating role of occupant behavior more fully into account, at all levels of organization. 

From a policy perspective, GPIC investigators can then take this knowledge about 

occupant behavior and tie it into the development of better, more integrated design 

process and best practices that are incorporated into building programs within the GPIC 

region and nationally. Performance-based codes and tying incentives for energy 

efficiency to actual performance would also be expected to advance the GPIC energy 

agenda. 

 

 Diffused and confused locus of control 

A level of cooperation among building developer/owner, manager, and 

tenants/occupants is required to meet energy efficiency and related objectives. 

Additionally, some level of confusion exists regarding control over key building functions 

such as lighting and HVAC. A variety of remedies may be available ranging from a 

program of tenant/occupant education to new design approaches and operating systems 

that help to assuage the inherent tension between centralized and local control. GPIC 

investigators of building occupant behavior can assist in finding solutions by formalizing 

the results of POE into models of more realistic occupant behavior that the building and 

real estate industries can, in turn, use in designing, construction and operating buildings 

with more predictable performance. 

 

 The role of direct feedback and a new view of split incentives; is economic 

motivation sufficient? 

While direct feedback on energy use remains an important tool in promoting energy 

efficient behavior, other approaches could be made available to building occupants that 

would capture their interest and bond them to a mission of steep energy reduction. 

Developers/owners of buildings already comprehend the importance of direct feedback 

even while costs to sub-meter a multi-tenanted building can be prohibitive and 

technically complicated for a mix of tenants such as represented in this study. Next in 

line for GPIC research in Year 2 is an exploration of the effects of customized feedback 

mechanisms (individual dashboards) in conjunction with serious games/social media-like 

interventionist approaches in these or similar buildings. This is an undertaking to be 

executed at all levels of organization – developer/owner, building manager, tenant, and 

employee/occupant.  
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Related Publications 

 Senick, J., Andrews, C.J., Sorensen Allacci, M., Wener, R.E., Niyogi, I. and Brooks, J. 

“Energy Efficiency and Occupant Behavior”. Prepared by the Rutgers Center for 

Green Building for at Rutgers University for the Energy Efficient Buildings Hub, 

Philadelphia, PA. 2012. At http://rcgb.rutgers.edu/wp-

content/uploads/2013/11/report_Energy_Efficiency_and_Occupant_Behavior.pdf 
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Case 4 

Case study title 

Occupant Behavior in Response to Energy-Saving Retrofits and Operations 

 

Contributors 

 J.A. Senick:  Rutgers Center for Green Building, Rutgers University, NJ, USA 

 R.E. Wener, I. Feygina: Polytechnic Institute of NYU, NY, USA  

 M. Sorensen Allacci, and C.J. Andrews: Rutgers Center for Green Building, 

Rutgers University, NJ, USA  

 

Contribute to other subtasks 

 Subtask C: Occupant action models in commercial buildings 

 Subtask E: Applications in building design and operations 

 

When and where 

2012, Philadelphia, PA, USA 

 

Building one description 

 Owner: a real estate investment trust/public 

 Building type: single-tenanted office 

 Total floor area: 76,692 gross sf 

 Number of stories: 3 story 

 Location (city, country): Greater Philadelphia, PA, USA 

 Not available 

 

Occupant type of building one  

Office, some private, some open work areas 

 

Building two description 

 Owner type: a real estate investment trust/public 

 Building type: 35 buildings including office, laboratories, experimental research 

and technical shops 

 Total floor area: 755,540 sf 

 Number of stories: 3 story 

 Location (city, country): Philadelphia, PA, USA 

 Not available 

 

Occupant type of building two 

Offices, some private, some open work spaces 
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Methods 

This study employed a quasi-experimental research design using data collected through 

a series of participant surveys to assess building occupants’ reactions to energy-saving 

technologies in their work environment. Each of the buildings underwent a series of load-

shed events in which cooling and lighting were decreased by a preset amount.  

 In Building 1 the decreases ranged from 5 to 15 %.  

 In Building 2 the decreases entailed switching to weekend lighting in the 

hallways, and turning the HVAC system off.  

Participants were surveyed on days when the building was operating under the normal 

energy load (control days) and during load shed days, and these measurements were 

compared to detect changes in responses.  

Participants also completed a comprehensive survey which assessed their satisfaction 

with and concerns about environmental factors in the workspace, including air flow, 

temperature, and light, ability to alter and control the environment, choice of adaptive 

behaviors resorted to when environmental features do not meet needs, as well as 

perceived productivity and overall job satisfaction. The survey was completed during the 

shoulder season, in the early Fall, and again during the Winter in a shorter follow-up 

format.  

 

Data and models availability 

Data and/or models are available to Annex 66 participants. Reports, models, and 

anonymized data are freely available for download at greenbuilding.rutgers.edu. Please 

cite this source if you use it.  

 

Summary 

This study addresses occupant response to energy-saving technologies and load 

shedding in the workplace. Two case studies of office buildings are presented in which 

occupant response to environmental conditions is tracked. The load shedding involved 

planned reduction of electrical consumption within each building, through reductions to 

both HVAC and lighting systems. The research questions asked whether these changes 

produced noticeable responses from the occupants in how they felt about ambient 

conditions in the workplace. 

The study’s findings are suggestive about the characteristics of buildings that are more 

conducive to load shedding that is acceptable or even viewed positively by building 

occupants, and the extent to which typical office buildings may be overcooled during the 

summer and shoulder months.   

Also, the degree to which the load shedding causes a significant change in the 

perceived quality of environmental conditions appears to be a function of 1) how big the 

change in conditions (percentage change in lighting levels and temperature/airflow) - 

small changes may be beneath the threshold of detection and have minimal impacts; 

and 2) how satisfactory existing conditions were prior to load shedding.  Therefore, 

larger changes in conditions, in terms of percentage of decrease in power to HVAC and 



 

36 

 

lighting, are likely to be detected and may affect comfort, satisfaction, productivity, and 

stress. The strength of the effect and the direction of change depends on qualitative 

factors of building systems and nature of the load shedding, as well as prior levels of 

satisfaction. 

These grounded hypotheses, resulting from this work, will be tested on additional 

buildings in BP3 en route to producing a roadmap with our industry partners regarding 

how to scale up successful energy efficiency interventions in commercial buildings.  The 

data collection associated with the current effort should be viewed as a pilot, as 

conditions for and timing of the load shedding were evolving even as instruments were 

being developed and tested on site. This resulted in in data collection from a relatively 

small number of testing days and research subjects. 

 

Key Findings  

In drawing conclusions we need to be careful to take into account the differing contexts 

of these buildings. First, they have different functions and populations. Building 2 is 

owner-occupied by employees of a scientific research organization. Building 1 is 

occupied by a single tenant whose employees are mostly engineers. Building 1 has 

much more sophisticated control systems and a superior building envelope, allowing it 

much better control over internal conditions, whereas Building 2 consists of a series of 

interconnected buildings of various ages, different envelopes, and varying control 

systems, over which operators have much less control, reducing their ability to adjust for 

changing conditions, areas with different kinds of sun exposure, etc.  

 All load shedding is not the same. Load shedding may be much better suited for 

buildings that have sophisticated controls and high-tech envelopes, in which 

operators can tailor adjustments at a fine-grained level so that the load shedding 

is not seen as a drastic change.  Load shedding may be a more risky strategy in 

buildings with older systems and less control over operations.  

 A second important finding relates to the extent to which these (and many other) 

buildings may be over-cooled in summers. Especially given that occupants 

preferred somewhat warmer temperatures (Building 1), reducing the extent of 

over-cooling, where it occurs, could save energy – not only during load-shedding 

events but on a regular basis. 

 

Related Publications 

 Senick, J.A., R.E. Wener, I. Feygina, M. Sorensen Allacci, and C.J. Andrews. 2013. 

Occupant Behavior in Response to Energy-Saving Retrofits and Operations. 

Prepared by the Center for Green Building at Rutgers University for the Energy 

Efficient Buildings Hub, Philadelphia, PA. 2103. At http://rcgb.rutgers.edu/wp-

content/uploads/2013/10/Subtask-6.4-No30-Attachment-Occupant-Behavior-and-

AERs_resubmitted.pdf 

  

http://rcgb.rutgers.edu/wp-content/uploads/2013/10/Subtask-6.4-No30-Attachment-Occupant-Behavior-and-AERs_resubmitted.pdf
http://rcgb.rutgers.edu/wp-content/uploads/2013/10/Subtask-6.4-No30-Attachment-Occupant-Behavior-and-AERs_resubmitted.pdf
http://rcgb.rutgers.edu/wp-content/uploads/2013/10/Subtask-6.4-No30-Attachment-Occupant-Behavior-and-AERs_resubmitted.pdf
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Case 5 

Case study title 

Preliminary experimental evaluations of occupant behavior during load shedding 

 

Contributors 

Malenchak, S., Sorensen Allacci, M., and Andrews, C.J: Rutgers Center for Green 

Building, Rutgers University, NJ, USA 

 

Contribute to other subtasks 

 Subtask C: Occupant action models in commercial buildings 

 Subtask E: Applications in building design and operations 

 

When and where 

2013, Greater Philadelphia region, PA, USA 

 

Building(s) description 

 Owner: Liberty Property Trust-real estate investment trust/public 

 Building type: commercial office-9 buildings 

 Total floor area:  Not applicable 

 Number of stories: Not applicable 

 Location (city, country): Greater Philadelphia region, PA, USA 

 One or two pictures: Not available 

 

Occupant type 

Typical office workers in open office spaces in an office building (enclosed offices and 

cubicles) 

 

Methods and Data 

The study seeks to answer multiple questions. The first has to do with advanced energy 

retrofits spread throughout the designated buildings. The second question addresses the 

effects of partial load shedding on occupant behavior and satisfactions in the buildings. 

Based on an agreement with their local energy provider, the company agreed to 

participate in simulated load shedding events throughout peak periods during the 

summer of 2013; the sheds took place once a week for six weeks. The events consisted 

of a reduction in energy consumption to the buildings’ heating, ventilation, and air 

conditioning (HVAC) and lighting systems, of differing percentages. Their goal was to 

see how this would affect their tenants. 

This was to be accomplished in several ways, the first being field interviews and 

observations. During load shed events, the research team conducted intercepts 

interviews among tenants, attempting to uncover any perceived differences noticed 

during the events. Also collected were observations on occupant behavior, such as the 
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use of personal fans, lights, etc., as well as temperature and lighting measurements 

throughout the building. The last measure came in the form of tenant surveys, which are 

the focus of this paper. 

This quasi-experiment took the form of an interrupted time series program evaluation. To 

evaluate the effects of load shedding, data were collected from occupants in each 

building using online surveys conducted both before the program took place (baseline 

surveys), as well as in the mornings and afternoons of both load-shed and separate 

control days, during which there were no changes to the building systems (daily surveys). 

The baseline survey consisted of a comprehensive questionnaire about the participant’s 

background information as it pertains to this study, such as location in the building, 

ratings on general building performance, age, etc. The daily surveys were shorter, and 

intended to only observe current behaviors and satisfactions. There were 81 baseline 

and 554 daily surveys completed during the course of this program. The majority of the 

independent, or explanatory, variables used for this analysis came from the baseline 

survey, which were then matched to the participants of the daily surveys. 

 

Data and models availability 

Data and/or models are available to Annex 66 participants. Reports, models, and 

anonymized data are freely available for download at greenbuilding.rutgers.edu. Please 

cite this source if you use it.  

 

Summary 

Load shedding has become increasingly popular across the industrialized world in recent 

years. This is the practice of reducing some or all of a building’s energy consumption for 

a period of time, usually during hours of peak energy demand, in order to reduce stress 

on the power grid and reduce the chances of total system collapse. There is a large and 

growing body of literature on the effects and benefits of load shedding in regards to 

controlling energy demand and supply, but there is virtually no research done on the 

behavioral effects this practice may have on occupants of buildings undergoing the 

treatment. 

This report describes the methods and results of an interrupted time series quasi-

experiment used to try to capture these results. To do so, we employed a series of 

occupant surveys during both load shedding (of both HVAC and lighting systems, at 

several levels of intensity) and control (normal) conditions across nine multi-tenanted 

commercial buildings owned by a real estate investment trust in Greater Philadelphia 

and analyzed the results using a variety of statistical techniques, most notably linear 

regression models. 

Our results suggest that there is no impact from these instances of load shedding on 

occupants in this set of buildings, or in some cases a slight positive effect, with the latter 

being counterintuitive when considering the program. This leads to two potential 

conclusions: either 1) the effect of the load shedding on occupants is slight enough that 

it goes unnoticed, or 2) that the buildings were operating inefficiently under normal 

conditions. In either case, there is the potential that permanent changes in operating 
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practices may be a viable option. The results also suggest that organizational learning is 

taking place as the building owner gains experience with this technology. 

 

Key Findings 

 There is either no impact from load shedding on occupants, or a positive effect, 

which is counterintuitive when considering the program. 

 The buildings are perhaps not operating at their optimal levels, at least in terms 

of the HVAC systems. The effect of load shedding on occupants is minor, at least 

in the percentages used in this experiment.  

 It may be possible to shed certain amounts of loads permanently without loss of 

utility to building occupants.  

 Reductions in required electricity production may be possible on a fairly large 

scale, should these results prove robust. 

Related publications 

 Malenchak, S., Sorensen Allacci, M., and Andrews, C.J. 2014. Preliminary 

Experimental Evaluations of Occupant Behavior during Load Shedding. Prepared by 

the Center for Green Building at Rutgers University for the Energy Efficient Buildings 

Hub, Philadelphia, PA.  At http://rcgb.rutgers.edu/wp-

content/uploads/2014/05/LoadSheddingReport20140131.pdf 
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Case 6 

Case study title 

Preliminary Report: Incorporating Information on Occupant Behavior into Building 

Energy Models 

 

Contributors 

 Figueroa, M., Putra, H.C., and Andrews, C.J.: Rutgers Center for Green Building, 

Rutgers University, NJ, USA 

 

Contribute to other subtasks 

 Subtask C: Occupant action models in commercial buildings 

 Subtask E: Applications in building design and operations 

 

When and where 

2014, Building 101, Philadelphia, PA, USA 

 

Building(s) description 

 Owner: Philadelphia Industrial Development Corporation (PIDC) 

 Building type: commercial office-multi tenanted 

 Total floor area: 75,156 sf 

 Number of stories: 3 floors and basement 

 Location (city, country): Philadelphia, PA, USA 

 Floor plan: 

 

Occupant type 

Typical office workers in open office spaces in an office building 
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Methods and Data 

Data Collection 

The approach followed was multi-method to record independent observations and self-

report by tenant representatives and occupants of leased office space at Building 101.  

 An initial walk-through guided by facilities personnel incorporated initial 

observations and contacts with tenants as perspective participants in the study.   

 Upon return, consenting tenants were engaged in in-depth interviews that 

developed information including the organization’s mission, number of 

employees, their schedules in the office, and overall lighting and temperature fit 

with office needs.   

 Short intercepts were conducted with tenant employees and included questions 

asking individuals to compare the typical lighting and temperature they have 

compared to their preferred levels.  

 Photo documentation and spot measurements of temperature and light levels 

were taken in conjunction with interview comments.    

 An online building-wide anonymous survey focusing on occupancy patterns and 

uses of space and equipment was also distributed through facilities 

management.   

 Finally, targeted plug load metering was implemented in tenanted and some 

common spaces where their measurements could be used to compare appliance 

use and energy consumption to inform future strategies toward energy efficiency.  

 

EnergyPlus building physics model & calibration process 

EnergyPlus is a US DOE supported energy analysis and thermal load simulation 

program (see http://apps1.eere.energy.gov/buildings/energyplus/energyplus_about.cfm).  

The program is capable of calculating and integrating details of heating and cooling 

loads, conditions from HVAC and coil loads, and energy consumption of primary plant 

equipment in text format.   

 

Agent-Based model 

This paper modeled occupants’ thermal comfort actions (adjusting thermostat set points, 

turning on/off space heater, opening/closing the windows and door, and changing 

winter/summer clothes) and their influence on airflow rate entering their thermal zone by 

using set points and infiltration schedules. Occupants’ lighting comfort actions (turning 

on/off headlights, turning on/off task lights, opening/closing windows blinds) were 

modeled using equipment schedule. In modeling the occupant behavior that updates the 

schedule, this study adopts two paradigms to specify theories and processes of human 

behavior. Agent-Based modeling (ABM) provides a paradigm of simple entities, called by 

agents that respond respectively to the environment.  ABM is widely used in the 

ecological domain, but not very straightforward in representing human-like behavior 

(Epstein 2006; Axelrod 1997). Belief, Desire, Intention (BDI) is a paradigm of agents that 

are based on a psychological view of how people behave. BDI characterizes the process 

of human decision-making, such that autonomous agents follow five procedural steps in 
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making behavioral decisions: establishing beliefs, desires, and intentions, developing 

plans, and deciding to carry out a particular plan of action (Rao and Georgeff, 1998). 

NetLogo (Wilensky and Rand 2013) is used to develop an integrated model of the two 

paradigms.  Calibration is done using survey and interview data from individual building 

occupants, plus building-wide performance data for building 101. The model is validated 

by using it to predict outcomes (expressed as usability metrics) for an additional building. 

The complete modeling logic contains a building performance sub model that updates 

the state of the indoor environment over time. It contains a human agent sub model that 

simulates individual and shared decisions of occupants as they experience and react to 

changing environmental conditions. It also includes a file populated with information 

about the current state of controllable and uncontrollable building features. A building 

performance sub model has inputs such as building site conditions and design choices. 

Inputs for human agent model include occupancy schedule, occupant preferences and 

capabilities.  Outputs include the usability measures of effectiveness, efficiency, and 

satisfaction (Andrews et al. 2011).  

 

The Building 101 simulation study consists of three main components: the building 

energy model, the occupant behavior model, and the integrating model.  

The building energy model, using EnergyPlus, incorporates occupant behavior 

component within it at a very limited level. The picture of having the building physics and 

the building occupants to perform an active-reactive interaction drives the overall goal of 

this simulation study. The building energy model does not allow users to modify the input 

variables. It also does not receive values exogenously for all the input variables. The 

integrated model runs in two-step for each simulation-hour. The model calls the building 

energy sub-model and the occupant behavior sub-model alternately. Initially, the 

integrated model runs the building energy sub-model in order to create the building 

environment. The model, then, runs the occupant behavior model in order to simulate 

building occupants’ sensation and adaptive behavior towards the surrounding building 

environment. The occupant behavior model will consider the building environment 

conditions, resulted from the building energy model run at the previous time period, and 

the occupants’ physiological preference towards the environment. 

The integrated model has not yet completed to perform calibration for both comfort and 

satisfaction simulations on Building 101. The model, however, successfully follows the 

logic of occupants’ comfort and satisfaction (Andrews, Chandra Putra, and Brennan, 

2013). In the thermal comfort scenarios, occupants perceive the environment as Too 

Hot, Thermally Neutral, or Too Cold. The set of adaptive behaviors occupants perform 

range from Do Nothing, Adjust the Thermostat, Turn On/Off a Personal Fan, Turn On/Off 

a Personal Space Heater, and Add/Remove Clothing. In experiments simulating 

illumination levels, occupants perceive Too Bright, Illumination-Neutral, or Too Dim. 

Occupants can respond such sensations with the following adaptive behaviors: Do 

Nothing, Adjust Window Blinds, Turn Task Light On/Off, and Turn Overlight On/Off. 
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Data and models availability 

Data and/or models are available to Annex 66 participants. Reports, models, and 

anonymized data are freely available for download at greenbuilding.rutgers.edu. Please 

cite this source if you use it.  

 

Summary 

Accepted practice absolves building energy modelers with responsibility for capturing 

many of the effects of occupant behavior by assuming fixed comfort targets and ignoring 

“unregulated” loads. This paper asks what we can learn by incorporating more detailed 

information about occupant behavior into models. It compares results of three 

approaches: conventional practice, an augmentation incorporating detailed occupancy 

patterns, and an augmentation incorporating detailed behavioral responses of occupants 

to evolving comfort conditions. We apply these models to a highly-instrumented 

commercial building in Philadelphia, PA, USA, using EnergyPlus and extensions based 

on Markov chain modeling and agent-based modeling. We share preliminary findings 

only because the project schedule was disrupted.  

 

Key Findings 

 Better occupancy data greatly improves energy model accuracy 

 Standard assumptions about occupant schedules are often wrong so that a more 

sophisticated representation is warranted 

 Better data about occupants’ adaptive responses only marginally improves 

energy model accuracy 

 Yet such data are quite valuable for predicting occupant satisfaction 

 EnergyPlus needs additional hooks for incorporating occupant behavior. 

 

Related publications 

 Figueroa, M., Putra, H.C., and Andrews, C.J. 2014. Preliminary Report: Incorporating 

Information on Occupant Behavior into Building Energy Models. Prepared by the 

Center for Green Building at Rutgers University for the Energy Efficient Buildings 

Hub, Philadelphia, PA. At http://rcgb.rutgers.edu/wp-

content/uploads/2014/05/ModelingReport20140131.pdf 

  

http://rcgb.rutgers.edu/wp-content/uploads/2014/05/ModelingReport20140131.pdf
http://rcgb.rutgers.edu/wp-content/uploads/2014/05/ModelingReport20140131.pdf
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Case 7 

Case study title 

Occupant individual behavior and group occupancy schedule data mining through office 

appliance power consumptions 

 

Contributors 

 Jie Zhao & Khee Poh Lam, Center for Building Performance and Diagnostics, 

Carnegie Mellon University 

 

Contribute to other subtasks 

Subtask A: Occupant movement and presence models in buildings 

 

When and where 

2013 – 2015, Phipps Center for Sustainable Landscapes, Pittsburgh, PA, USA 

 

Building(s) description 

 Owner type: NGO 

 Building type: commercial office 

 Total floor area: 23,000 sf 

 Number of stories: 2 conditioned + 3rd floor atrium 

 Location (city, country): Pittsburgh, PA, USA 

 One or two pictures: 

 

 

Occupant type 

Typical office workers in open office spaces in an office building 
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Description of the datasets 

Data points Collection frequency Collection period Format 

power consumption 
data of office appliances 

5 minutes 3 months Plugwise API -> Web-
based MySQL -> CSV 

Fitbit connection data Whenever Fitbit is 
connected, about 6 
seconds while it is 
connected 

3 months Python script -> CSV 

Keyboard and mouse 
movement 

5 minutes 3 months Java program -> CSV 

 

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Not available, protected by IRB agreement. 

 

Summary 

This case study developed a practical data mining approach using office appliance 

power consumption data to learn the individual occupant behavior and group occupancy 

schedule. All-in-one wireless electrical outlet meters/switches Plugwise® were installed 

to meter office appliance power consumptions. Fitbit® pedometers were used to record 

occupants "ground truth". The method was implemented in a medium office building. A 

total of 15 volunteers participated in the study over three months. The individual 

occupant behavior was categorized as “computer-based work”, “non-computer-based 

work”, “remote work”, and “absence”. The group schedule was defined as a percentage 

of occupied to the total number of occupants in a time series. 

Decision tree, linear regression, support vector regression, locally weighted learning, 

and several other algorithms were tested and compared. The data mining results 

showed that using power consumption data of office appliances, the average percentage 

of correctly classified individual behavior instances was 90.29%. The average correlation 

coefficient between the predicted group schedule and the ground truth is 0.94. The 

experimental results also showed a fairly consistent group occupancy schedule, while 

capturing the diversified individual behavior in using office appliances.  

Compared to the occupancy schedule used in the Department of Energy prototype 

medium office building models, the learned schedule had a 36.67–50.53% lower 

occupancy rate for different weekdays. The heating, ventilation, and air conditioning 

(HVAC) energy consumption impact of this discrepancy was investigated by simulating 

the prototype EnergyPlus models across 17 different climate zones. The simulation 

result showed that the occupancy schedules’ impact on the building HVAC energy 

consumption had large variations for the buildings under different climate conditions. 

The learned occupancy schedule also contributed to two different studies. In publication 

[2], the learned occupancy schedule was used to calibrate an EnergyPlus model. In 

publication [3], the learned occupancy schedule was used to develop a new behavior-

oriented metric to quantify the plug load energy savings due to occupant behavior 

change.   
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Key Findings 

 Computer power consumptions can accurately predict office workers’ presence 

and working behavior 

 The occupancy schedule of this case study building is significantly different from 

the occupancy schedules in the DOE’s prototype building models 

 Group occupancy schedule is fairly consistent throughout the experiment period 

 Individual occupant working behavior is very diversified 

 Passive HVAC energy impact from occupant presence varies by climate zones 

 

Related publications 

 Zhao, J., Lasternas, B., Lam, K.P., Yun, R., Loftness, V. (2014). Occupant behavior 

and schedule modeling for building energy simulation through office appliance power 

consumption data mining. Energy and Buildings, 82, 341-355. 

 Lam, K.P., Zhao, J., Ydstie, E.B., Wirick, J., Qi, M., Park, J. (2014). An EnergyPlus 

whole building energy model calibration method for office buildings using occupant 

behavior data mining and empirical data. Proceedings of 2014 ASHRAE/IBPSA-USA 

Building Simulation Conference, 160-167, Atlanta, GA. 

 Lasternas, B., Zhao, J., Yun, R., Zhang, C., Wang, H., Aziz, A., Lam, K.P., Loftness, 

V. (2014). Behavior-Oriented Metrics for Plug Load Energy Savings in Office 

Environment. Proceedings of 2014 American Council for an Energy-Efficient 

Economy (ACEEE) Summer Study on Energy Efficiency in Buildings, 7, 160-172, 

Pacific Grove, CA. 

 Zhao, J., Yun, R., Lasternas, B., Wang, H., Lam, K.P., Aziz, A., Loftness, V. (2013). 

Occupant Behavior And Schedule Prediction Based on Office Appliance Energy 

Consumption Data Mining. Proceedings of CISBAT 2013 International Conference - 

Clean Technology for Smart Cities and Buildings from Nano to Urban Scale, 1, 549-

554, EPFL, Lausanne, Switzerland. 
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Case 8 

Case study title 

A Framework including a unique test data to predict the Residential Occupants’ 

Presence for Model Predictive Control in Residential Environment 

Contributors 

Bing Dong, Zhaoxuan Li,  

Mechanical Engineering Department 

University of Texas at San Antonio, USA 

Contribute to other subtasks 

Subtask A 

When and where 

Four residential houses, at downtown San Antonio, U.S.A. 

Building(s) description 

 Building type: residential building 

 Total conditioned floor area: 2000 ft2 (185 m2) 

 Number of samples: 4 

 Location (city, country): San Antonio, USA 

 One or two pictures: 

 

Occupant type 

 To represent the diversity of occupants and their presence in residential building 

environment, occupant spaces are first categorized at room level: rest areas, 

living areas, and cooking areas:  

o The rest areas represent guest bedrooms and master bedrooms 

o The living areas represent living rooms 

o The cooking areas represent kitchens 

 Occupancy presence is also categorized at house level. 
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Description of the datasets 

Information of the investigated office building 

 Room types and functions 

 Room-level occupancy presence detection 

 Family types (single, couple, couple with children, etc.) 

 Income level 

Investigated the stochasticity of occupant presence patterns at both the room-

level and house-level: 

 Presence differences among different houses  

 Presence differences at room level for the same house 

 Presence similarity at room level for each space types for different houses 

 Variances difference for the presence rates of individual rooms and individual 

houses 

 Typical patterns of the occupancy presence 

The predictive abilities are evaluated at four prediction windows: 

 15-min ahead 

 30-min ahead 

 1-hour ahead 

 24-hour ahead 

Inputs of the model: 

 Occupancy binary historical data 

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Available upon request. More information is available in the published conference 

and journal articles. 

Summary 

This study provides a unique test dataset for residential occupancy and develops the 

appropriate algorithms to predict occupancy presence for a residential building that allow 

a better control and optimization of whole building energy consumptions. The residential 

houses are usually simulated based on Time User Survey data. This study focuses on 

providing a unique data set of four residential houses collected from occupancy sensors 

within one year period in the U.S. Periods are varied within the year 2014 and not 

continuously available. A new inhomogeneous Markov model for occupancy presence 

prediction is proposed and compared to three other models: Probability Sampling, 

Artificial Neural Network, and Support Vector Regression. Training periods for the 

presence prediction are optimized based on change-point analysis of historical data. The 

study further explores and evaluates the predictive power of the models by various 
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temporal scenarios, including 15-min ahead, 30-min ahead, 1-hour ahead, and 24-hour 

ahead occupancy presences forecasts. The spatial-level comparison is additionally 

provided by evaluating the prediction accuracy at both room-level and house-level. The 

final results show that the proposed Markov model outperforms the other methods in 

terms of an average 5% correctness with 11% maximum difference in one time step 

ahead forecast of the occupancy presence. In day ahead prediction, not much difference 

could be observed among the models.  

This study observes a significantly lower performance in 24-hour ahead prediction 

scenario compared to the other prediction windows (e.g., 15-min to 1-hour ahead). It is 

challenging to improve the forecast accuracy in this case even with the changes of 

temporal resolution (sampling rate) between 15-min and 1-hour resolution. The seasonal 

or other time-related factors are not identified owing to the difficulties to continuously 

collect the data. As this study sole focuses on a proposed prediction model of the 

residential occupancy and provides a unique data set for the test at first, the longer and 

more general data set is rather a necessary part to be investigated in future for general 

studies and applications. Further investigation on improvements of the day ahead 

predictions on more general and abundant data pool could be conducted by the more 

advanced time series analysis and more house samples to detect the irregular dynamics 

of the occupancy pattern. 

Key Findings 

 The residential occupancy has large dynamics in terms of the presence. 

Residential presence pattern is highly different because of the family type, the 

income level, and the life style. 

 Onsite collection of residential data is extremely difficult owing to the residents 

can actually replace and relocate those sensors. The data set collected through  

occupancy sensor contains large uncertainty. Future smart residential homes 

with hidden and untouchable sensors may provide more insights on how the 

residential occupancy real looks like.   

 Occupancy presence prediction is possible and accurate for extremely short and 

short time step ahead cases. Day-ahead case is really difficult and hard to 

improve considering the randomness especially in residential environment. 

 Many more occupancy models need to be validated for prediction purpose not 

only for building simulations. 

Related publications 

 Li, Z., Dong, Bing. A new modeling approach for short-term predictions of occupancy 

presence in residential buildings. Building and Environment (accepted), 2017. 

 Li, Z., Dong, Bing. Investigation of a short-term prediction method of occupancy 

presence in residential buildings. IBPSA 2017 (accepted). 
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Case 9 

Case study title 

A simulation approach to estimating potential energy savings of occupant behavior 

measures 

Contributors 

Kaiyu Sun, Tianzhen Hong, Building Technology and Urban Systems Division, Lawrence 

Berkeley National Laboratory, USA 

Contribute to other subtasks 

Subtask D 

When and where 

An office building in four U.S. climates and two vintages 

Building(s) description 

 Building type: office building 

 Total conditioned floor area: 18,550 ft2 (1,723 m2) 

 Number of stories: 2 

 Location (city, country): four cities (Chicago, Fairbanks, Miami, and San 

Francisco), USA 

 One or two pictures: 

 

Occupant type 

 Typical office workers in open and private office spaces 
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 Three prevailing types of work schedules on weekdays: 8am–5pm, 7am–6pm, 

and 6am–11pm. The occupants don’t work on weekends. 

Description of the datasets 

Information of the investigated office building 

 Room function 

 Realistic zoning 

 Number of occupants in each zone 

 Lighting schedule, plug-load power density and schedule 

Investigated five occupant behavior measures: 

 Lighting control, two scenarios: 

o Occupants turn on lights when they enter the room and turn off lights 

when they leave the room. 

o Occupants turn on lights when they are in the room and feel that it is dark; 

they turn off lights either when they leave the room or feel that the room is 

bright enough. 

 Plug-load control: when the zone is occupied, the electric equipment is 100% on; 

when the zone is unoccupied, the electric equipment will be reduced by 30%. 

 Thermal comfort criteria: considers a theoretical situation where all the occupants 

have a broader thermal comfort acceptance range defined by either: 

o ASHRAE Standard 55 comfort zone limits 

o ASHRAE Standard 55 adaptive comfort criteria 

 HVAC control: two scenarios: 

o Occupants turn on HVAC when they are in the room and turn off HVAC 

when they leave the room. 

o Occupants turn on HVAC when they are in the room and feel hot (in 

cooling mode) or cold (in heating mode), and turn off HVAC either when 

they leave the room or feel cold (in cooling mode) or hot (in heating 

mode). 

 Window control: Natural ventilation is taken as the priority to provide cooling for 

perimeter zones, and mechanical systems pro-vide supplementary cooling when 

natural ventilation alone is not enough to meet cooling setpoints. 

The saving potentials of the five occupant behavior measures were evaluated in 

four climate zones: 

 Chicago (Hot summer cold winter) 

 Fairbanks (Cold winter) 

 Miami (Hot and Humid) 

 San Francisco (Mild) 

and two vintages: 

 1989 (existing buildings) 

 2010 (new buildings) 
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Inputs of the baseline model: 

 Stochastic occupancy schedules generated by the Occupancy Simulator 

(occupancysimulator.lbl.gov) 

 Efficiency inputs based on ASHRAE Standard 90.1 of the 1989 and 2010 

editions, including lighting power density, envelope properties, and HVAC 

equipment efficiencies. 

Data and models availability 

Are data and models available to the Annex 66 participants? If yes, where to download 

them? License agreement to use. 

 Available upon request. More information is available in the published journal 

article. 

Summary 

The case study developed a methodology to estimate the potential energy savings of 

occupant behavior measures. First, this study defines five typical occupant behavior 

measures in office buildings (covering lighting, plug-load, comfort criteria, HVAC control 

and window control), simulates and analyzes their individual and integrated impact on 

energy use in buildings. A real office building was investigated and modeled. The energy 

performance of the five occupant behavior measures was evaluated in four typical U.S. 

climate zones (Chicago, Fairbanks, Miami and San Francisco) and two vintages (1989 

and 2010) representing existing and new buildings. The Occupancy Simulator, a web-

based App developed by LBNL, was used to simulate the realistic occupant movement 

and generate occupant schedules in each zone with inputs from the site survey of the 

case building. 

Based on the simulation results, the occupant behavior measures can achieve overall 

savings as high as 22.9% for individual measures and 41.0% for the integrated 

measures. Although actual energy savings of occupant behavior measures depend upon 

many factors, the presented methodology is robust and can be adopted for other studies 

aiming to quantify occupant behavior impact on building performance. 

Future studies can expand to cover: (1) a larger scale with more population, such as the 

city, state, and country scales; (2) other occupant behaviors such as the operation of 

window shades; (3) other building types, such as residential and retail. Future work can 

also look for opportunities to implement the occupant-behavior measures in real 

buildings. If the actual energy savings from occupant-behavior measures are available, 

the method of quantifying the energy savings potential can be verified, and necessary 

enhancements to the method can be implemented to improve its accuracy. 

Key Findings 

 Occupancy schedules have a significant impact on the energy savings of 

occupant based measures. When estimating the potential energy savings of 

occupant-related measures, it is crucial to apply the occupancy schedules 
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reflecting the realistic characteristics of the occupancy variations in time and 

space. 

 The main energy savings captured by the occupant behavior measures come 

from the avoidance of energy waste in the unoccupied rooms, especially for the 

energy use of lighting, plug-load and HVAC systems. 

 Based on the simulation results, the occupant behavior measures can achieve 

considerable energy saving potentials as high as 22.9% for individual measures 

and 41.0% for the integrated measures. 

 This study confirms the human dimension is as significant as the use of 

advanced building technologies for low- or net-zero energy buildings. 

Related publications 

 Sun, K., Hong, T. A simulation approach to estimate energy savings potential of 

occupant behavior measures. Energy and Buildings 136 (2017) 43–62. 
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Case 10 

Case study title 

A Framework for Quantifying the Impact of Occupant Behavior on Energy Savings of 

Energy Conservation Measures 

Contributors 

Kaiyu Sun, Tianzhen Hong, Building Technology and Urban Systems Division, Lawrence 

Berkeley National Laboratory, USA 

Contribute to other subtasks 

Subtask D 

When and where 

A 15-year-old office building, in four U.S. climates 

Building(s) description 

 Building type: office building 

 Total conditioned floor area: 18,550 ft2 (1,723 m2) 

 Number of stories: 2 

 Location (city, country): four cities (Chicago, Fairbanks, Miami, and San 

Francisco), USA 

 One or two pictures: 
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Occupant type 

 To represent the diversity of occupants and their behaviors in building 

performance simulation, occupant energy-use styles are first categorized into 

three distinguished attitudes: austerity, normal, and wasteful, regarding their 

energy consciousness during interactions with building energy systems, including 

HVAC, windows, lights, and plug-in equipment:  

o The normal behavior represents the typical design assumptions of 

occupant behavior in a building 

o The austerity behavior represents the ideal conditions of energy savers 

o The wasteful behavior represents the ideal conditions of energy spenders 

 

 Three prevailing types of work schedules on weekdays: 8am–5pm, 7am–6pm, 

and 6am–11pm. The occupants don’t work on weekends. 

Description of the datasets 

Information of the investigated office building 

 Room function 

 Realistic zoning 

 Number of occupants in each zone 

 Lighting schedule, plug load power density and schedule 

Investigated the impact of occupant behaviors on the energy savings potential of 

seven individual energy conservation measures (ECMs) and one packaged ECM: 

 Reducing lighting power density 

 Reducing plug-in electric equipment power density 

 Improving envelope performance 

 Improving HVAC system efficiency 

 Daylighting control 

 Variable refrigerant flow system 

 Natural ventilation coupled with the VRF system 

 The integrated ECM: the integration of the above individual ECMs 
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The impact on saving potentials was evaluated in four climate zones: 

 Chicago (Hot summer cold winter) 

 Fairbanks (Cold winter) 

 Miami (Hot and Humid) 

 San Francisco (Mild) 

Inputs of the baseline model: 

 Stochastic occupancy schedules generated by the Occupancy Simulator 

(occupancysimulator.lbl.gov) 

 Efficiency inputs based on ASHRAE Standard 90.1-2001, including lighting power 

density, envelope properties, and HVAC equipment efficiencies. 

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Available upon request. More information is available in the published journal 

article. 

Summary 

This study presents a framework for quantifying the impact of occupant behavior on 

ECM energy savings using building performance simulation. First, three occupant 

behavior styles (austerity, normal, and wasteful) were defined to represent different 

levels of energy consciousness of occupants regarding their interactions with building 

energy systems (HVAC, windows, lights and plug-in equipment). Next, a simulation 

workflow was introduced to determine a range of the ECM energy savings. Then, 

guidance was provided to interpret the range of ECM savings to support ECM decision 

making. Finally, a pilot study was performed in a real building to demonstrate the 

application of the framework. Simulation results show that the impact of occupant 

behavior on ECM savings varies with the type of ECM. Occupant behavior minimally 

affects energy savings of ECMs that are technology-driven (the relative savings differ by 

less than 2%) and have little interaction with the occupants; for ECMs with strong 

occupant interaction, such as the use of zonal control variable refrigerant flow (VRF) 

system and natural ventilation, energy savings are significantly affected by occupant 

behavior (the relative savings differ by up to 20%).  

The zero-net energy (ZNE) technologies are successful and growing today as energy 

performance requirements are becoming more and more stringent. ZNE technologies, 

such as natural ventilation, HVAC control, and demand response, tend to need more 

interaction with occupants. Therefore, they are more sensitive to occupant behaviors 

and reactions to stimulations, which makes occupant behavior a significant uncertainty 

factor for the technology’s performance. In other words, occupant behavior may 

significantly change the way technologies are designed and expected to perform. The 

proposed framework provides a novel, holistic simulation approach enabling energy 

modelers to calculate the ECM savings as a range rather than a single fixed value 
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considering the variations of occupant behaviors in buildings, which provides a critical 

input to the risk analysis of ECM investments, enabling stakeholders to understand and 

assess the risk of adopting energy efficiency technologies for new and existing buildings. 

Recommended future work include: (1) developing more realistic occupant behavior 

styles based on a large-scale survey of occupants in various climates, (2) pilot testing 

the methodology in a real design or retrofitting project, and (3) extending the study for 

other building types and building technologies. 

 

Key Findings 

 The occupant behavior style has a significant influence on building energy use. 

Buildings occupied by energy spenders could consume more than twice the 

energy of the energy savers. 

 For occupant-independent ECMs, which are purely technology-driven and have 

little interaction with the occupants, such as reducing LPD, reducing EPD, 

improving envelope properties, and improving HVAC system efficiency and 

daylighting control, energy saving percentages are minimally affected by 

occupant behavior styles. For occupant-dependent ECMs, which have strong 

interactions with the occupants, such as the VRF system and natural ventilation, 

energy saving percentages are significantly affected by occupant behavior styles. 

 The wasteful behavior style generally achieves the greatest absolute energy 

savings while its saving percentages are close to or even lower than those of the 

austerity and normal behavior. This is important information for decision makers 

in retrofit planning. 

 The occupant schedules have certain impacts on the simulated results of ECM 

savings, especially for the occupant-dependent ECMs coupled with the austerity 

behavior style. Adopting realistic occupant schedules rather than normalized 

ones would help improve the accuracy of ECM saving evaluation. 

Related publications 

 Sun, K., Hong, T. A Framework for Quantifying the Impact of Occupant Behavior 

on Energy Savings of Energy Conservation Measures. Energy and Buildings 

(under review), 2017. 

  



 

58 

 

Case 11 

Case study title 

Lighting Energy Consumption in Ultra-Low Energy Buildings: Using a simulation and 

measurement methodology to simulate occupant behavior and lighting controls 

Contributors 

 Panyu Zhu, Tsinghua University, Beijing, China 

 Michael Gilbride, University of Washington, Seattle, WA, USA 

 Da Yan, Tsinghua University, Beijing, China 

 Hongsan Sun, Tsinghua University, Beijing, China 

 Christopher Meek, University of Washington, Seattle, WA, USA 

Contribute to other subtasks 

Subtask D 

When and where 

 2016-2017 

 An open office on the 2nd floor of a six-story 4831 m² (52,000 ft²) office building 

(The Bullitt Center) in Seattle, WA, USA  

Building(s) description 

 Building type: office building 

 Total conditioned floor area: 52,000 ft2 (4,831 m2) 

 Number of stories: 6 

 Location (city, country): in Seattle, WA, USA  

 One or two pictures: 
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Investigated Office description 

 Office type: open office 

 Total conditioned floor area: about 300 m2 

 Number of occupants: 22 

 Location: on the 2nd floor in The Bullitt Center 

 Floor plan: 

 

Occupant type 

 The office is equipped with IP enabled “smart” plug strips that measure device-

level consumption (monitors, computers, task lighting, etc.) at two-second 

intervals at the receptacle level and report data through a wireless connection to 

an online database. Occupancy patterns were derived from these measurements 

with the assumption that most people at work use computers. There are four 

occupancy patterns: 
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Occupant 
ID 

Start 
time 

End 
time 

Working  
days / year 

occupancy-1 A 09:00 17:00 171 

 occupancy-2 B-H 09:30 17:30 239 

occupancy -3 I-P 09:00 17:00 256 

occupancy -4 Q-W 10:00 17:00 120 

 

 Lighting-control actions were modeled in DeST, where probability curve is used 

to describe each action. The probability curve for lighting behavior is defined by 

four parameters, which are threshold (u), range (l), curve shape (k), and 

probability (p). 

 

 

Description of the datasets 

Information of the investigated offices in that building 

 Room function 

 Realistic zoning 

 Number and affiliation of occupants 

 Layout of desks 

 Layout and capacity of lamps and lanterns 

 Device-level plug load 

 Office-level lighting load 

The impact of control strategy on lighting energy consumption was compared in 

four scenarios: 

 Scenario-1: “Enter –ON; leave – OFF” 

 Scenario-2: “Enter –ON; leave – OFF, automatically dimming” (baseline) 
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 Scenario-3: “Dark –ON; leave – OFF, automatically dimming” 

 Scenario-4: “Dark –ON; leave – OFF” 

Inputs of the baseline model: 

 Occupancy schedules derived from measurements 

 Lighting control patterns 

 

Data and model’s availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Available upon request. More information is available in the published journal 

article. 

 

Summary 

This research proposed a simulation methodology that incorporates measured energy 

use data to generate occupant schedules and control schemes with the ultimate aim of 

using simulation results to evaluate energy-saving measures that target occupant 

behavior. Hourly lighting and plug load circuit data from the office space was gathered 

from June 2015 to July 2016. Occupancy patterns were derived from these 

measurements with the assumption that most people at work use computers. The 

lighting control pattern of “enter-ON, leave-OFF, with dimming effect” was modeled in 

DeST. The simulated lighting load and energy consumption were compared with the 

measured data as calibration. Then the calibrated model was considered as the baseline 

(scenario 2) in the scenario analysis. Four scenarios with different lighting control 

patterns including the baseline were simulated and compared to show their impact on 

lighting energy consumption. According to simulation results, lighting energy could be 

largely reduced by installing dimming control.  Occupant behavior also showed its 

influence on energy saving. By changing the turn-ON-light action from the “enter -ON” 

pattern to the “dark-ON” pattern, the lighting energy could be further reduced.  

Ultra-low energy buildings, such as the Bullitt Center, demonstrate the centrality of 

occupant behavior to achieving low energy use and improving energy performance.  The 

proposed methodology in this research can be valuable in testing the sensitivity of 

occupant behavior and energy outcomes in buildings such as the Bullitt Center, where 

occupant behavior can significantly impact overall performance. As occupants interact 

with the building and with how much or little control they have over their own 

environment quantifying the savings can help occupants understand the importance of 

controls and further their adoption.  

Recommended future work include: (1) energy saving potential of sub-controlled 

overhead lighting system; (2) plug load control strategies with the aim of energy saving; 

(3) predicting energy impacts of changes in occupancy 
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Key Findings 

 Occupant behavior has a great impact on energy consumption, especially in 

Ultra-low energy buildings, such as the Bullitt Center. 

 From evaluating lighting energy performance and occupant behavior in the four 

scenarios, it is clear that dimming through controls is the most effective energy-

saving strategy.   

 When there is no automatic dimming function, the impact of occupant behavior 

becomes much greater.   

 The combination of using measured energy use data to understand occupant 

schedules and activities with the predictive potential of computer simulations can 

be a useful tool in improving the energy performance of ultra-low energy 

buildings. 

 

Related publications 

 Panyu ZHU, Michael Gilbride, Da Yan, Hongsan Sun, Christopher Meek. Lighting 

Energy Consumption in Ultra-Low Energy Buildings: Using a Simulation and 

Measurement methodology to Simulate Occupant Behavior and Lighting 

Controls. Building Simulation (under review), 2017. 
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Case 12 

Case study title 

Understand and manage occupant rebound behavior and its influence on decision-

making of energy retrofitting projects 

Contributors 

Yujie Lu and Nan Zhang, Department of Building, National University of Singapore, 

Singapore 

Contribute to other subtasks 

Subtask E: Applications in building design and operations 

When and where 

 Maryland, United States 

 Simulation was performed and analyzed during Jan 2016 – Dec 2016 

Location description 

 Owner type: University 

 Building type: campus; educational facilities 

 Total floor area: N.A. 

 Location (city, country): Maryland, United States 

 Buildings’ conditions: Around 75% of buildings are older than 25 years, average 

age 40 years 

Occupant type 

University staffs and students 

 

Description of the datasets 

Key parameters in the energy retrofitting decision: 

 Projects characters: Capex(Ic), O&M cost (IOM), Energy Savings (R(t)) 

 Contract: Guaranteed amount of energy saving (G), sharing percentage (%) of 

between ESCOs and owners  (α & β) 

 End Users: max rebound effect of end users (ϕ), shared percentage between end 

users and owners  (θ) 

 Net Present Value (NPV) of the retrofitting project and various parties involved  

 Optimal contract period (n*) of ESPC  

Methodology used for analysis 

 Simulate end users’ rebound effect and the influence on the actual energy 

savings by considering three different scenarios in the ESPC: 1) Renters do not 

have rebound effect; 2) renters have rebound effect but do not have shared 
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incentives; and 3) renters have rebound effect and can share part of monetary 

incentives from the energy savings.  

 Monte Carlo Simulation of occupant behavior and the influence to the retrofit 

project performance under different parameters inputs 

 Sensitive analysis and impact analysis on the proposed decision-making model  

 The relationship among all stakeholders involved in energy retrofit project is 

indicated in the following figure.  

 

 

Figure 1. Overall relationship among all stakeholders in EPC project considering renters’ 
rebound effect 

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Available upon request.  

 

Summary 

Energy Savings Performance Contracts (ESPCs) are a business model that aims to 

promote building energy efficiency through retrofitting with minimal or zero upfront costs 

for owners. Many studies show that occupants tend to use more energy than expected 

after retrofits (referred as rebound effect), which results in underestimated retrofitting 

costs. However, end users’ energy-using behaviors and their relationship to the ESPCs 

decision-making process have seldom been studied. This study aims to propose such a 

behavior-based model to assist the contract decision-making among the major 

stakeholders in a building’s retrofit, including building owners, Energy Service 

Companies (ESCOs), and renters. The proposed model incorporates renters’ rebound 

effect (consuming more energy than expected after the retrofit) and investigates the 

impact that major variables have on the rebound effect. To validate and evaluate the 

performance of the proposed model, a real retrofitting project in Maryland, United States, 
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was examined. The results show that the rebound effect can significantly increase the 

payback period of ESPCs contracts by up to 4 years. The contract duration is also 

subject to renters’ risk attitudes toward shared energy savings. The findings of this study 

can help ESCOs and building owners predict the potential energy savings, design proper 

EPC strategy, and maximize the potential savings from building retrofits. 

 

Key Findings 

This study introduces a behavior-based decision-making model for evaluating and 

designing ESPCs contracts in rented properties. Renters’ rebound effect, a significant 

but frequently ignored phenomenon, is incorporated in this model to better estimate 

potential energy savings. The result shows that renters’ rebound effect would cause up 

to a 4-year difference of acceptable ESPCs contract length in the case study (17-year 

contract with 15% rebound effect, 13-year contract without rebound). In order to mitigate 

and eliminate renters’ rebound effect, a shared incentive strategy between owners and 

renters was proposed. The major associated variables with rebound effect were 

discussed to assess their impacts on the profitability and duration of ESPCs projects, 

such as renters’ risk attitudes, expected rates of return, and sharing strategy variables. 

Main findings include as follows. 

  

 The baseline case (scenario 1) does not consider the rebound effect of renters 
on energy savings and this scenario results in the optimal contract period of 13 
years.  
 

 However, the renters’ rebound effect is common in the energy retrofit projects 
(scenario 2). With users rebound effect, if no actions have been taken to control 
the rebound effect, the optimal contract period would be 17 years, which is 
apparently too long for building owners.  
 

 When providing the money incentives to the renters ---Owners share part of 
energy savings to the renters (scenario 3), the optimal contract period is 
shortened to 14 years. Compared with the second scenario, contract period of 
this case is three years shorter, which contributes to the success of EPC in 
energy retrofit project.   
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Figure 2. Optimal contract periods at different scenarios 

 
Risk attitude (ρ) reflects the renters’ energy conservation behavior response to 

incentives and affects their rebound effect. For example, sensitive renters (i.e., schools 

with tight budgets) are more easily motivated by shared incentives since the shared 

amount is negligible compared to the building O&M cost. These “sensitive renters” can 

be represented by the shallow curve (ρ=-100) in Figure 3. The other type of renters (i.e., 

schools with abundant budgets) may be insensitive to shared incentives, and they (as 

“insensitive renters”) can be represented as the steep curve (ρ=-10) in Figure 3. 

 

As indicated in Figure 3, when the sharing percentage is fixed (i.e., 0.7), renters with 

different attitudes can yield different actual savings and result in different projects’ NPVs 

and contract periods. For example, the insensitive renters (𝜌 = −10) resulted in a 9.06% 

increment in a project’s NPV and in a 1-year decrease in the contract period (from 14 

years to 13 years) compared to the sensitive renter (𝜌 = −100). 
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Figure 3. Rebound effect under different risk attitudes 

 

This proposed case study contributes to the body of knowledge in two aspects. First, it 

incorporates renters’ energy rebound effect into ESPCs contract assessment for rented 

properties. The rebound effect was found to dominantly determine the contract period in 

our result. Second, the shared saving scheme proposed in our decision model enables a 

feasible “joint saving mode” that can mitigate the renters’ rebound effect via shared 

monetary incentives from the saved energy cost. The results suggest the effectiveness 

of shared saving strategies in intervening and managing occupant behavior for 

education and institutional buildings to achieve occupant energy efficiency. 

 

Related Publications 

 Yujie Lu, Nan Zhang and Jiayu Chen (2017), A Behavior-based Decision Making 

Model for Energy Performance Contracting in Building Retrofit. Vol 156, Dec 1 

2017, page 315-326. Energy and Building, Elsevier. [DOI: 

10.1016/j.enbuild.2017.09.088]  
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Case 13 

Case study title 

Analysis on the influence of occupant behavior patterns to building envelope's 

performance on space heating in residential buildings in Shanghai 

 

Contributors 

Siyue GUO, Da YAN, Ying CUI, Building Energy Research Center, Tsinghua University 

 

Contribute to other subtasks 

Subtask B: Occupant action models in residential buildings. 

 

When and where 

Simulation, Shanghai, CN 

 

Building(s) description 

 Owner type: Resident 

 Building type: Residential Building 

 Total floor area: 23,000 sf 

 Number of stories: 12, 2 households in each floor 

 Location (city, country): Shanghai, CN 

 Plane Figure: 

 

Occupant type 

Three member family, 2 adults& 1 children, in one apartment. 

 

Description of the model 

 Window-wall ratio 

orientation east south west north 

WWR 0.35 0.4 0.35 0.4 
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 Heat transfer coefficient of building envelope (W/(m2·K)) 

 Wall Roof Window 

Below national codes 2 1.7 4.7 

Current national 
codes 

1.5 1 3.2 

Above national 
codes 

1 0.6 2.7 

 

 Occupant behavior patterns 

Pattern 1 Heating for 24h, all the room maintain 18℃ above 

Pattern 2 Heating as long as anyone come back home, maintain 18℃ above 

Pattern 3 Heating only when residents feel cold, maintain 15℃ above 

Pattern 4 Heating only when residents feel cold and stop heating when sleep, maintain 

15℃  

Pattern 5 Heating only when residents feel cold and stop heating when sleep, maintain 

12℃  

 

 Shape coefficient: 0.24; 

 Coefficient of heat transfer of the enclosure: recording to national code “Design 

Standard for Energy Efficiency of Residential Building in Hot Summer and Cold 

Winter Zone”, 

 The indoor heat gain is set to 4.3W/m2 

 The heating season is December 1st to following February 28th. 

 

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Not available. 

 

Summary 

In this Case study, using building energy consumption simulation software DeST, 

different occupant behavior patterns and the life cycle energy consumption of external 

wall insulation were taken into account to help set an appropriate standard of the heat 

transfer coefficient of building envelope in residential buildings.  

It was found that the energy-saving potential of building envelope improvements could 

be significantly reduced under the “part-time, part-space” heating modes than “full-time, 

full-space” heating modes. Considering the life cycle energy consumption, it’s necessary 

to increase external insulation to a suitable thickness rather than blindly increasing 

insulation since energy consumption of insulation materials manufacturing could not be 

ignored. 
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The figure below revealed that the energy-saving potential of building envelope 

improvements differ a lot because of the various living patterns. In pattern 1, which might 

be called “full time, full space” heating patterns, strengthening the building envelope 

could lead a large amount of energy saving, however, the heating energy use varies 

slightly between the below national codes case and the above national codes case in 

pattern 5 which might be call “part-time, part-space” heating patterns. 

 
 

Key Findings 

 Because of behavior pattern, the households might have ten times difference in 

heating energy use. 

 The energy saving amount of different building envelope insulation level varies 

from different occupant behavior patterns.  

 Considering the life cycle energy consumption, it’s necessary to increase external 

insulation to a suitable thickness rather than blindly increasing insulation and 

seldom think about living patterns. 

 

Related publications 

 Siyue Guo, Da Yan, Ying Cui. Analysis on the influence of occupant behavior 

patterns to building envelope's performance on space heating in residential 

buildings in Shanghai[C]. Proceedings of the 2nd Asia conference of International 

Building Performance Simulation Association (ASim), Nagoya, Japan, November 

28-29, 2014. 
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Case 14 

Case study title 

Occupant control behavior of low-temperature air source heat pump (ASHP) in Chinese 

rural housing 

 

Contributors 

 Dr. Rongjiang Ma, Department of Building Science, Tsinghua University, China 

 Prof. Xudong Yang, Department of Building Science, Tsinghua University, China 

 

When and where 

2014 – 2016, 10 houses in Erhezhuang village, Beijing, China 

 

Building(s) description 

 Owner type: rural residents 

 Building type: rural housing 

 Total floor area: 70-140 m2 

 Number of stories: 1 

 Location (city, country): Beijing, China 

 One or two pictures: 

   

 

Occupant type 

 Typical rural residents living in Beijing for decades 

 

Description of the datasets 

Data points Collection frequency Collection period Format 

Operation status and 
continuous power 
consumption data of 
each air source heat 
pump 

1 minute 2 months CSV 

Indoor and outdoor 
temperature data 

2 minutes 2 months CSV 
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Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Summarized data will be available; models are yet to be developed. 

 

Summary 

Currently, China has more than 600 million people, occupying 24 billion m2 (about 258 

billion sf) of building space, in vast rural areas. Approximately 317 million tons of coal 

equivalent (tce), equaling 9.3 × 109 GJ, is consumed by the rural residential sector each 

year. Among which, about 120.3 million tons of coal (raw coal, ball-shaped coal, honey 

coal, etc.) and 82.8 million tons of raw biomass (wood branches, firewood, straw, etc.), 

equaling 131.3 million tce or 3.8 × 109 GJ, is consumed for household heating. These 

solid fuels significantly contribute to both indoor and regional emissions of pollutants 

such as carbon monoxide and fine particulate matter (PM2.5). 

 

This case study presents the first results from an intervention study currently conducted 

in Beijing suburb, China. The purpose of this particular effort is to quantify the 

effectiveness of using a split-type, low-temperature air source heat pump (ASHP) as an 

alternative way of clean heating in rural households. Ten (10) rural houses with floor 

areas between 70-140 m2 were tested, and detailed field measurements were conducted 

in two typical houses that represent general operating behavior patterns.  

Temperature loggers were used to record the indoor and outdoor temperatures. Smart 

power meters were installed to meter power consumption of ASHPs, and record the 

operating status of the heat ASHP. The temperatures and time-varying electricity 

consumption for nearly two months were monitored. 

 

Three “typical” occupant control modes can be summarized, all based on residents’ own 

use pattern without much instruction.  

 Occupant control behavior 1: “USED EVERYDAY & CONTINUOUS 

OPERATION”. This occurred in one of the master bedrooms where and the 

ASHP was on all the time. Indoor temperature setting of ASHP was medium (~18 

℃) and seldom changed. This temperature setting was considered as sufficient 

to meet the local rural residents’ comfort need.  

 Occupant control behavior 2: “USED EVERYDAY & INTERMISSIVE 

OPERATION”. This occurred in one of the bedrooms, where ASHP was on at 

night only (9.4 hours/day on average) when the room was occupied for sleep. 

And indoor temperature setting was high (~20 ℃) at night. 

 Occupant control behavior 3: “USED IRREGULARLY”. This occurred in 

irregularly occupied living rooms, where the ASHP was on only when the room is 

occupied (2.1 hours/day on average). And indoor temperature setting varied 

greatly (15-25 ℃) depending on guests’ comfort demand & clothing level, but in 

general higher than continuously occupied rooms. 
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The corresponding energy consumption of the three occupant control modes (rooms) 

are summarized in the following table. 

Table 1 Energy consumption of the three occupant control modes 

Occupant 

control mode 
Room 

Average 

running time 

per day 

(hours) 

Average indoor 

temperature 

when running 

(℃) 

Energy 

consumption of 

heating season 

per unit area 

(kWh/m2) 

USED 

EVERYDAY & 

CONTINUOUS 

OPERATION 

Master 

Bedroom  
23.2 18.2 36 

USED 

EVERYDAY & 

INTERMISSIVE 

OPERATION 

Second 

Bedroom 
9.4 19.7 37 

USED 

IRREGULARLY 

Living 

Room 
2.1 21.0 11 

 

After careful comparison, the results indicate that allowing for occupants’ own and 

flexible control of the ASHP can meet the various thermal comfort needs, and have 

significant energy saving implications.  

 

Key Findings 

 Continuously monitored ASHP power consumptions and indoor temperatures 

can accurately reflect residents’ occupational and control behaviors, beyond 

understanding the indoor comfort conditions and corresponding energy 

consumption. 

 Three representative occupant control behaviors related to ASHP use were 

identified.  

 The key energy-related occupant behaviors in residential buildings had a strong 

influence on energy consumption. 

 Actual building energy use could not be reasonably estimated without fully 

understanding and taking into account the possible occupant behaviors. 

 ASHP is an alternative way of clean heating to meet various thermal comfort 

needs in rural households.  

 

Related publications 

 Tsinghua Building Energy Research Center, 2016 Annual Report on China 

Building Energy Efficiency, China Building and Architectural Press. 
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Case 15 

Case study title 

Influence of occupant behavior pattern on air conditioning energy consumption  in 

residential buildings

 

Contributors 

Chuang WANG, Building Energy Research Center, Tsinghua University 

 

Contribute to other subtasks 

Subtask B: Occupant action models in residential buildings. 

 

When and where 

Simulation, Beijing, CN 

 

Building(s) description 

 Owner type: resident 

 Building type: Residential building 

 Total floor area: 1764m2 

 Number of stories: 6, four households in each floor 

 Location (city, country): Beijing, CN 

 Plane Figure: 

 

Occupant type 

 Three-member family, 2 adults& 1 children, in one apartment. 

 

Description of the model 

 Heat transfer coefficient of building envelope (W/(m2·K)) 

Wall Window 

0.622 2.8 

 Window-wall ratio: South:0.5, North 0.3; 

 The lighting power density in each room is 5 W/m2 
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 Equipment consumption(W/M2) 

Master Bedroom Second Bedroom Living Room 

6.3 7.9 9.8 

 Every main room has a split air conditioner. 

 The cooling season is from June 1st to September 30th. 

 The Step of the simulation is 5 mins. 

 Occupant behavior patterns 

Pattern 

1 

Cooling and open the window for 24h, all the room maintain 26℃ 

Pattern 

2 

Open window all the time &  Cooling as long as anyone is in the room, 

maintain 26℃ 

Pattern 

3 

Open window when get up or feel stuffy & Close the window before 

sleep and open the air conditioner. 

Cooling as long as anyone is in the room, maintain 26℃ 

Pattern 

4 

Open window when get up or feel stuffy & Close the window before 

sleep and open the air conditioner. 

Cooling only when residents feel hot (28℃) and stop cooling when 

leaving home, maintain 26℃  

Pattern 

5 

Open window when get up or feel stuffy & Close the window before 

sleep and open the air conditioner. 

Cooling only when residents feel hot (29℃) and stop cooling when 

leaving home, maintain 26℃ 

Pattern 

5 

Open window when get up or feel stuffy & Close the window before 

sleep and open the air conditioner. 

Cooling only when residents feel hot (29℃) and stop cooling when 

leaving home, maintain 27℃  

 

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Not available. 

 

Summary 

This case study defines six different patterns of the residential. And by compare the 

service time of the air conditioner and the final energy consumption of each pattern, it 

can be seen that even when use the same kind of HVAC system (in this case, split air-

conditioner) and in the same building, different patterns of the occupant’s behavior will 

cause great difference between the energy consumption. After defining different patterns 
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using the three-parameter Weibull distribution and other probability value, the simulation 

could give the energy consumption of each patterns. 

 
The figure above shows the service time of the air conditioner. It can be seen that the 

service time under pattern 1 could be about 3000 hours, while pattern 2 and pattern 3 is 

1700h, which is half of pattern 1. And the pattern 4 \5\6 only use the AC for 

600h\200h\40h.  
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This result reveals the great difference between different patterns. And it is the great gap 

in the service time that causes the large difference in energy consumption. 

 

Key Findings 

 Different patterns of the occupant behavior will cause a great gap in the energy 

consumption. 

 When people reduce the opening time of the AC, change the using pattern from 

using 24h per day to open only when in the room, the energy consumption of the 

AC could be reduced. 

 When raising the tolerant temperature, the service hour and the energy 

consumption of the AC would be reduced too. 

 

Related publications 

 Chuang WANG. Research of energy-consumption-related occupant behavior. 

Ph.D. Thesis, Tsinghua University, 2015. 

  



 

78 

 

Case 16 

Case study title 

Effectiveness of Information Conveying Means in Energy Behavior Interventions 

 

Contributors 

Yilong Han, Yujie Lu, Department of Building, National University of Singapore, 

Singapore 

 

Contribute to other subtasks 

Subtask E 

 

When and where 

 Hangzhou, China 

 April 2016 – July 2016 

 

Location description 

 Building type: residential building 

 Location (city, country): Hangzhou, China 

 Changmu Community, Qinfeng Community 

 Total Households: 2000+; Sample households 240- 

 One or two pictures 
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Occupant type 

 Typical household in Changmu Community and Qinfeng Community 

 A total of 2000+ households lives in the studied communities. Among them, 240 

households are recruited to participate in this household behavior intervention 

study.  

Types of intervention strategy  

 Energy saving tips 

 Eco-feedback   
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Figure 1. (a) Example message of energy saving tips; (b) example template of eco-
feedback information. 

Description of the datasets 

Information of occupancy: 

 Demographic information 

 Self-reported energy consumption behavior, including the usage of main 

appliances 

 Quality of life perception 

 

Information of energy consumption: 

 Monthly household electricity bill 

 Historical energy data from the previous year 

Models for analysis: 

 Pearson and Spearman correlation analysis, paired-sample t-test and Wilcoxon 

signed-rank test 

 Simple and multiple linear regressions 

 

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Available upon request.  

 

Summary 

Efforts have been made to explore the best ways to present information and feedback in 

order to maximize energy savings. Karjalainen (2011) examined different ways of 

presenting feedback on electricity consumption and user interface prototypes 

systematically. He found that presentations of cost, appliance specific breakdown, and 

historical comparison are key preference features of feedback on household electricity 

consumption that are valued most by occupants. The impact of real-time energy 

monitors and in-home display on energy consumption in residential settings are also 

studied in several metropolitan cites. Researchers also used different types of messages 

and message conveying means in behavior intervention experiments. Delmas and 

Lessem (2014) tested the efficacy of detailed private and public information on electricity 

conservation in a unique field experiment context in university residence halls. Private 

information that contains energy usage information was delivered through an online 

dashboard coupled with weekly emails, while public information was presented in the 

form of posters. Kamilaris et al. (2015) employed a case study on the individual energy 

use of personal computers in an office setting and assessment of various feedback 

types toward energy savings. A Sweden study (Vassileva et al. 2012) that included more 
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than 2000 households evaluated the effects of the different ways of presenting feedback 

used for different intervention groups. Web-based feedback resulted in being the more 

effective compare to direct display and paper-based and achieved approximately 15% 

electricity savings in different neighborhoods. Feedback via TV channel was found to be 

the most interesting way to receive information.  

Although participating occupants’ preferences are accessed via questionnaires during 

the development of the intervention strategies, preference does not necessarily mean 

effective in real life. We still lack empirical studies to understand the roles of 

communication means in conveying energy-related messages in behavior intervention 

programs. Thus, this case study aims to evaluate whether information conveying means 

have an impact on the effectiveness of behavior interventions, and if so, what is the best 

strategy to maximize the outcomes.  There are five treatment groups consisting of a 

combination of different information conveying means (paper-based, electronic-based, or 

in-person interaction) and intervention strategies (eco-feedback and/or energy saving 

tips), referring to Table 1.  A sixth group (control group) is used to calculate household 

electricity consumption variations of each treatment groups. Household electricity data 

was collected over a span of two years (January 2015 - December 2016), and the 

monthly behavior intervention last for four months (April 2016 – July 2016). 

 

 

 

Key Findings 

Table 1. Group settings and household energy performance after the first month’s 
intervention 

Group  
# of 
Households 

Information 
Conveying Means 

Behavior Intervention 
Strategies 

Household 
Electricity 
Consumption 
Variations 

Eco-feedback 
Energy Saving 
Tips 

1 37 
Leaflets & 
Stickers 

  -12.1%* 

2 35 
Leaflets & 
Stickers 

  -0.1%* 

3 37 WeChat    -5.7% 

4 30 WeChat   -6.6% 

5 25 Consultation   +0.6% 

Control 37 - - - - 

Note: *Household energy consumption variation difference between group 1 and group 2 

are statistically significate, p<0.05.  
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Figure 2. Household energy consumption variations of group 1 and group 2 

 During the treatment period, households consumed less electricity energy 
compared to the same time last year. In other words, the positive impact of this 
behavior intervention experiment was exhibited in most groups (except the 
consultation group).  
 

 Referring to group 2 and group 4, electronic-based information conveying means 

(WeChat) is more effective, achieving 6.6% energy savings, compared to paper-

based means (Leaflets & Stickers), when only “energy saving tips” is provided. 

Electronic-based delivery is more effective when the message is short, in figure 

format, and entertaining.  

 

 Referring for group 1 and group 2, more intervention strategies (eco-feedback + 
energy saving tips vs. energy saving tips) resulted in more household electricity 
reductions in paper-based delivering means, but similar evidence cannot be 
identified in electronic-based delivering means (compare group 3 and group 4). 
The information containing both eco-feedback and energy saving tips is quite 
lengthy, thus is not effective for cell-phone display. This finding is consistent with 
finding 2). However, we find that paper-based method may be more effective in a 
long run.   

 

 In this study, the results show that behavior interventions are hard to execute 

through in-person interaction/consultation, as more people drop off from group 5 

and the households of group 5 did not show better energy performance. Future 

behavior intervention programs that involve in-person interaction should be 

treated and designed more carefully. 

 

 The longitudinal study (in Figure 2) revealed that our behavior intervention 

became more effective over the course of the study period in group 1 and group 

2. The performance rebounded after the last intervention ended in August.  

This study contributes the understanding and exploration of targeted and tailored 
feedback in behavior intervention programs in buildings. Proper message conveying 
means may help promote intrinsic motivation and energy behavior, and change the 
individual’s energy performance, leading to a long-term benefit. The effectiveness of the 
message conveying depends on the way it is delivered and the information it contains. 
The potential delaying of paper-based leaflet messages make them easy to be ignored 
at the first place. However, leaflets are relatively easy to access over time, thus can exert 
multiple stimulations over and after the intervention period. Quite oppose to the long-
term nature of leaflets messages, electronic-based instant messages can convey 
information real-time and in a timeliness manner. However, our results showed that 
instant messages need to be short and entertaining to be effective. This is reasonable 
since mobile users easily get bored with lengthy and user-unfriendly messages. Another 
disadvantage of instant messages is they are easy to forget and hard to retrieve. Paper-
based leaflet messages may promote the persistence of behavior intervention programs, 
but proper electronic-based instant messages could result in significant short-term 
benefits.  
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This study suggests future research to include a combination of message delivering 
means based on the nature and the purpose of messages. The implementation of smart 
meters may help better reveal the underlying energy behavior profiles. Future study 
should focus on promoting in-person interaction in such interventions to eliminate 
human-induced misinterpretation, as it is considered one of the effective underused 
strategies. The platform of WeChat demonstrated its own advantages in this study. 
However, we did not explore its social media features. The use of social networks and 
peer educations could potentially escalate the effectiveness of behavior intervention 
strategies. 

 

Related Publications 

 Yujie Lu, Harn Wei Kua, Lin Xu, and Maoliang Ling (2017). Is Instant Messaging 

Effective in Promoting Household Energy Saving? A Household Intervention 

Study in Hangzhou, China. Working paper.  

 Yujie Lu, Harn Wei Kua, Lin Xu*, Yilong Han, Maoliang Ling, Yong Wang Lee 

(2017). Effectiveness of Delivering Eco-Feedback to Reduce Household Energy 

Consumption. Working paper.  
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Case 17 

Case study title 

Household Electricity Consumption Prediction Under Multiple Behavioural Intervention 

Strategies 

Contributors 

Meng Shen, Yujie Lu, Department of Building, National University of Singapore, 

Singapore 

Contribute to other subtasks 

Subtask E 

When and where 

 Hangzhou, China 

 April 2016 – July 2016 

Location description 

 Building type: residential building 

 Location (city, country): Hangzhou, China 

 Changmu Community, Qinfeng Community 

 Total Households: 2000+; Sample households 240- 

 One or two pictures 
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Occupant type 

 Typical household in Changmu Community and Qinfeng Community 

 A total of 2000+ households lives in the studied communities. Among them, 240 

households are recruited to participate in this household behavior intervention 

study.  

Types of intervention strategy  

 Energy saving tips 

 Eco-feedback   

Figure 1. (a) Example message of energy saving tips; (b) example template of eco-
feedback information. 

Description of the datasets 

Information of occupancy: 

 Demographic information 

 Self-reported energy consumption behavior, including the usage of main 

appliances 

 Big five personality traits 

Information of energy consumption: 

 Monthly household electricity bill 

 Historical energy data from the previous year 

Models for analysis: 

 Support vector regression (SVR) 

 Akaike information criterion (AIC) 
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 Simple and multiple linear regressions 

 Monte Carlo simulation 

 

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Available upon request.  

 

Summary 

Residential buildings contribute to 13.6% of the electricity use in China. According to 

National Energy Administration of China, the amount of electricity consumption 

expanded quickly by 10.8% in 2016, and therefore the residential sector is considered as 

the key sector for energy savings. It appears to us that a recent trend of calling for 

investigating the potential occupant behavior driven energy reductions in buildings 

(Khosrowpour et al., 2016), showing that the tremendous faith is no longer only being 

placed on the innovative energy-efficient technology. Since household energy-related 

behavior itself can significantly bear on energy use (Schakib-Ekbatan et al., 2015), it 

leaves the room for further discovering the great potential of achieving cost-effective 

energy efficiency in buildings through introducing multiple behavioral intervention 

strategies to change occupant behaviors (Stern, 2011). 

However, as existing studies failed to consider and quantify the impact of changes in 

occupant behaviors and other characteristics on the household electricity consumption, 

the effectiveness of behavioral interventions may not be assessed and predicted 

accurately (Shen et al., 2016). There is a growing need to identify key energy behaviors 

for predicting the household energy consumption accurately through different 

intervention strategies, in particular targeting the residents’ with heterogeneous 

characteristics. It is undisputed that the energy-related behaviors are not easily to be 

measured as they are influenced by a wide range of factors. Moreover, the majority of 

the behavioral intervention studies aimed to improve the households’ performance on 

energy conservation has focused on conducting a statistical analysis of a field or 

laboratory experiment, or carrying out a system simulation experiment. The impacts of 

monthly usage feedback delivering via different medias on electricity consumption are 

still unclear. In addition, prior research on the linkage between personal characteristics 

(such as demographic factors etc.) and the intervention effects rarely explained the 

underlying logic of why uniform intervention may have different impacts on occupants, 

which personality traits actually lead to observed differences (Shen & Cui, 2015; Shen et 

al., 2015). That is, personality being an important motivation of our attitudes, values, and 

beliefs, may be a significant predictor of the energy behavior and energy consumption 

(Milfont & Sibley, 2012). With this in mind, this paper starts with the following questions: 

Can we use household energy-related behaviors and their personality traits to predict 

their energy consumption through various behavioral intervention strategies? How to 

measure the interaction effect between behaviours and other personal characteristics on 
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consumption prediction? Can we optimize the intelligent solution approach such as 

Support Vector Regression (SVR) to accurately predict the electricity consumption for 

each household? 

Therefore, based on an experiment conducted to infer the effects of feedback via 

different delivered methods on household monthly electricity consumption in Hangzhou, 

China, this paper presents a variable selection approach to determine the optimal set of 

household electricity consumption predictors. Moreover, an optimal SVR model is 

proposed for predicting household consumption under multiple intervention strategies. 

The aim of the model development is to choose the best-fit intervention strategy which 

can generate the maximum electricity savings for every single household. The improved 

model is designed to incorporate energy-related behaviors, personality traits, 

demographic/building features and the weather data, into behavioral interventions to 

predict electricity consumption for the households. In particular, the interaction effect 

between behaviors and other variables has been introduced to the household electricity 

consumption prediction. 
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Figure 2. Flow chart in developing an optimal SVR prediction model 
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Key Findings 

Table 1. Performance of SVR on the household energy consumption forecasting 
measured by Mean Absolute Percentage Error (MAPE; %). 

Model Next-month 
prediction 

Time-series forecasting 

Training 
data 

Testing 
data 

February March April May June 

OLS 
Regression 

28.11 22.75 36.22 35.28 44.54 40.88 38.41 

SVR-Linear 26.1 18.89 38.89 34.06 42.20 35.20 33.51 

SVR-Radial 7.00 25.09 6.63 51.32 67.59 58.94 42.82 

SVR-
Polynomial 

14.88 13.80 16.67 30.66 45.99 41.87 55.31 

SVR-RBF 9.42 10.65 11.58 26.77 37.81 33.41 34.98 

SVR-GA 
RBF 

8.42 9.28 6.55 25.53 36.27 27.71 29.68 

 

          
Figure 3. Variation of the maximum electricity savings (kWh) with saving percentage (%) 

shown in brackets, and the household proportion (%) under each intervention strategy 

(from IN1 to IN6). The saving percentage is relative to the control condition. 
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Figure 4. The relationship between the maximum electricity savings (S), the personality 

traits of extraversion (PE1) and conscientiousness (PE3), with the optimal intervention 

strategies (IN1-IN5) presented in five surfaces respectively. 

 Based on the experiment conducted in Hangzhou, China, this study has 

proposed a variable selection approach to determine the best subset of 

consumption predictors by implementing AIC. This approach is vital to find the 

optimal set of variables for prediction which assist in increasing the accuracy of 

household electricity consumption prediction. Among the initial 48 variables, 18 of 

them have been considered as the critical predictors including energy behaviors, 

personality trait, demographic information, building features and weather 

indicators in this research. 

 This study improves the accuracy of prediction by introducing the interaction 

effect between the selected five behavior predictors and other variables to the 

prediction model. The proposed GA RBF SVR is capable to predict household 

electricity consumption under multiple intervention strategies. The result shows 

that the proposed model exhibit the best and robust performance in both next-

month prediction and time-series forecasting (see Table 1).  

 The proposed model is able to act as a decision-making tool to predict the 

electricity savings accurately through each intervention strategy and to choose 

the most appropriate intervention strategy for different households (in Figure 3). 

According to the proposed approach, we calculated the most appropriate 

treatment strategy for each of the households in all experiment groups. This new 

customized approach generated from the improved SVR model can overall lead 

to an additional 12.1% reduction in households energy consumption than the 

experiment setting. Specifically, the result demonstrated that the intervention 

strategy of WeChat with feedback and without feedback achieved the highest 

(15.97%) and second highest (15.43%) electricity savings compared to other 

strategies, followed by the consultation strategy (14.9%). The sticker strategies 

showed the smallest reduction in electricity consumption during the experiment 

period. Importantly, all of the feedback intervention presented a slightly more 

electricity savings comparing to non-feedback intervention. 

 To examine the effect of personality traits, including extraversion and 

conscientiousness, on the maximum predictive electricity savings, we simulated 
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10,000 households by using the Monte Carlo method and illustrated the results in 

a 3D surface plot (see figure 4), in which the predicated maximum energy 

savings in WeChat with feedback condition was much more than any other 

intervention strategies, reinforcing the previous predictive results. Further, we 

identified five types of people (i.e., ELCH, ELCL, EHCH, EMCL and ELCM) based on 

their extraversion and conscientiousness that response very distinctively to the 

optimized intervention strategy. The plot presented that the residents with a high 

rate of conscientiousness while a low rate of extraversion only has a small saving 

potential. Nevertheless, those who are disorganized and introverted showed 

polarized behaviors that this type of person could either save massive electricity 

consumption with the help of the WeChat with feedback intervention or save little. 

The first contribution of this study is the effort to design a predictive tool that with the aim 

of selecting the optimal intervention strategy and predict the maximum of electricity 

savings potential for each household, along with extracting the most critical subset of all 

candidate characteristic variables of households. Furthermore, the proposed prediction 

model considered the households’ characteristics including the energy use behaviors 

and personality traits can further improve the accuracy of the electricity consumption 

prediction. Last but not least, the results would gain knowledge about the design of 

behavioral intervention strategy in terms of the demand-side management, and more 

importantly, would lead to considerable energy savings in the aggregate.  

Given the contributions above, this study has two limitations that require for the future 

study. The current work was conducted in one city of China. However, residents’ 

behaviors and living habits may be different from in other countries. To generalize the 

prediction model, it needs to be applied to and tuned by different scales and culture. In 

addition, the prediction model is developed by monthly household consumption. To 

further improve the accuracy of prediction with the proposed model, future work should 

use minute-based energy data to reduce the value of MAPE in the residential sector. 

 

Related Publications 

 Meng Shen, Huiyao Sun, Yujie Lu* (2017). Household electricity consumption 

prediction under multiple behavioral intervention strategies using support vector 

regression. Energy Procedia. Forthcoming.  

 Meng Shen, Yujie Lu*, Lin Xu, Huiyao Sun (2017). Prediction of Households 

Electricity Consumption and Concerted Intervention Strategies Based on 

Occupant Behaviour and Personality Traits. In preparation. 
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Case 18 

Case study title 

Energy Forecast Facilitates Greener Clubhouse Environment 

 

Contributors 

Simon Tsui & Allen Yui, CLP Power Hong Kong Limited 

 

Contribute to other subtasks 

N/A 

 

When and where 

Since 2014, New Territories, Hong Kong 

 

Building description 

 Owner: Park Island tenants 

 Building type: Residential Clubhouse 

 Total floor area: over  500,000 sf 

 Number of stories: three 2-conditioned-story Clubhouses 

 Location (city, country): Hong Kong, China 

 

 

 

Occupant type 

 3 deluxe clubhouses, exclusive use by the tenants of Park Island, with catering 

facilities, swimming pools, ball courts, etc. 

 

Methods 

 Meter Online (MOL) mapped the 9-day hourly weather forecast temperature and 

humidity data of the 13 weather stations of Hong Kong Observatory with CLP’s 

nearest 126 customer supply regions to forecast the energy consumption for 

individual customers in coming 9 days.  

 The Clubhouse Manager drives behavioral changes of his team to reduce the 

electricity consumption by making use of the forecast information from MOL. As a 
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result, 5% electricity consumption was reduced monthly during the summer 

period. Total electricity of 7000kwh saved. 

Data and models availability 

The customer does not agree to disclose the consumption data. 

Summary  

The MOL service is widely adopted by CLP’s commercial & industrial customers such as 

hotels, shopping malls, officer towers, clubhouses and factories, etc.  Energy saving 

achieved ranges from 1% to 6% of the total consumption. The saving is significant 

because it is merely by behavioral change without any capital investment by the 

customers. 

Key Findings 

[1] Raising the air conditioning temperature set-point of a clubhouse could be a quite 

common way to save electricity, but less comfort for the clubhouse users is a 

price to pay and thus it is difficult to get all the clubhouse users’ support.  

[2] MOL consumption forecast function provides a scientific data to support the 

decision of energy saving actions. Both technical and non-technical staff can 

refer to the same standard of MOL forecast information. Like the Clubhouse 

Manager, in this case, he reduced the air conditioning supply for every MOL high 

consumption forecast day.  

[3] Simple and standardized energy-saving operations enable direct involvement of 

all staff to support the energy saving actions. It brought a successful behavioral 

change.  

[4] The success case was shared with other customers through CLP’s e-newsletter 

published in June 2015 that has further driven energy saving behavioral change. 

Related Publications 

 CLP Green Plus e-Newsletter, CLP Power Hong Kong Limited, Issue June 2015  

 CLP Meter Online Energy Management System, APIGBA Intelligent Green 

Building Forum, 2016 

 The Meter Online Service - Application of weather information in support of CLP 

electricity consumption forecast for customers, CEPSI International Conference, 

2016  

 Meter Online Energy Management System, IET Annual Power Symposium, 2016 

 Meter Online - Information Drives Behavioural Change to Save Building Energy, 

World Sustainable Built Environment Conference, 2017 
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Case 19 

Case study title 

Information Drives Behavioural Changes for Residential Customers with Eco Power 360  

 

Contributors 

Simon Lam, Gary Chiang, Joe Lo, CLP Power Hong Kong Limited 

 

Contribute to other subtasks 

N/A 

 

When and where 

2016, Kowloon and New Territories Areas, Hong Kong 

 

Building description 

 Building type: Residential households with majority of apartments in high-rise 

buildings  

 

Occupant type 

 Over 300,000 residential customers’ households 

 Location (city, country): Hong Kong, China 

 

 

Methods 

 Eco Power 360 provided residential customers with required information to drive 

the behavioral change to adopt energy efficient living style. The information 

includes consumption projection, energy usage benchmarking, and consumption 

distribution analysis.  

 Consumption project provided a comprehensive analysis of electricity 

consumption based on previous 12-months of consumption data and the 

projected consumption of the next billing period, for understanding the customer 

behaviors in energy usage. 
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 Energy usage benchmarking compared customers’ electricity usage with similar 

households and drive the customers’ behavioral changes  

 Consumption distribution analyses customers’ electricity consumption distribution 

and provide directions for energy saving to customers 

 Eco Power 360 drives behavioral changes for the residential customers and also 

influences their family members to reduce the electricity consumption by making 

use of the analysis information from Eco Power 360.  

 As a result, Eco Power 360 supported Power Your Love 2016 programme to 

save energy again. The participant was saved more than 10% of energy 

compared to other customers in summer (June to August) of 2016 

 

Data and models availability 

Residential customers’ consumption data are not disclosed. 

Summary  

Eco Power 360 is widely adopted by CLP’s residential customers.  Energy saving result 

was achieved especially in the summer period. The saving is engaging. It could drive the 

energy saving by behavioral change for the Eco Power 360 users and also their family 

members. 

Key Findings 

 During summer 2016 (Mid June to Mid August), the ~300,000 participants of the 

Power Your Love program and Eco 360 users saved around 3GWh of electricity.  

 The average temperature of that period was 0.8% higher than the same period in 

2015.  

 The saving percentage of the Eco 360 users is 10% better than the saving 

percentage of all other residential customers.  

 Based on customer services experience, customers found it difficult to perform 

energy saving actions without the information of appliances distribution and also 

the energy saving advice. 

 Customers found it hard to engage and motivate their family members to 

participate in energy saving. Simple gamification, e.g., energy saving tips may 

help to encourage customers’ commitment and involvement in sustaining long-

term energy saving behaviors.  

 Analytic results with consumption projection and benchmarking results could 

influence behavioral change in a continuous manner 

 Simple and easy to understand energy saving tips enabled the residential 

customers to adopt energy saving actions and also share with their family 

members. It brought a successful behavioral change.  
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Related Publications 

 CLP Light magazine, CLP Power Hong Kong Limited, Issue 14, 12.2016  
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Case 20 

Case Study Title  

Investigate the effectiveness of providing energy usage feedback system coupled with 

education intervention on energy saving for Hong Kong primary students 

Contributor 

Elizabeth Hio Wa LAI, Reconnect Limited 

 

Contribution to other subtasks 

N/A 

 

When and where 

Hong Kong 

15 December 2016- 14 December 2017 

 

Building(s) description 

10 Primary Schools in Hong Kong 

 

Occupant type 

Students of 10 primary schools in Hong Kong 

 

Methods and data 

One of the project objectives is to evaluate the effectiveness of having both energy 

usage feedback system and energy saving education on primary schools students in 

Hong Kong. 10 local primary schools are chosen randomly out of the 571 primary 

schools in Hong Kong2. It is anticipated that this control study will contribute to the 

knowledge concerning the magnitude of the impact of education intervention, together 

with the use of feedback tool on energy usage, on inducing behavioral change in 

students in relation to energy conservation. The aim is to investigate the changes in the 

students’ behavior concerning energy usage, with an expectation that they will adhere to 

the energy-saving principles outside of the school premises, by bring such good 

practices to their home and beyond.  

                                                

 

2  Education Bureau (2015), Primary schools figures and statistics, http://www.edb.gov.hk/en/about-edb/publications-stat/figures/pri.html., 

Accessed 13 April 2016. 

http://www.edb.gov.hk/en/about-edb/publications-stat/figures/pri.html
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This curriculum was delivered over an eight-month intervention period designed to 

establish ‘good behaviors’ pertaining to energy saving. The Reconnect team held a 

series of activities with participating schools covering education, smart energy metering 

feedback system, and energy saving competitions, such as ‘five-minute shower 

challenge’, ‘no air-con days’, and ‘eat locally think globally’. 

During the intervention phase, the 10 schools will be divided into 2 groups with the 

following structure (Table 1 and Figure 1). 

 Group A Experimental School Group (With Feedback) - students will receive 
both education intervention and energy usage feedback by accessing real-time 
information on their energy usage through the interactive screen at schools and 
web-based interfaces; 

 Group B Control School Group (With No Feedback) - this is the control group 
which only receives education intervention and no real-time feedback on energy 
usage. 

Table 1 Research groups 

 Education Monitoring 
Real-time 
Feedback 

Group A Experimental School 
Group (With Feedback) 

      

Group B Control School Group 
(With No Feedback) 

    

 

Figure 2 Experimental schools and control school groups 

Data and models availability 

 Not available. 

 

Summary and key findings 

The program is divided into three phases as shown below: 

 Phase 1 Baseline – The baseline for both Control School Group and Experimental 
School Group were was based on the historical energy data collected from the 
schools. The information collected from the historical data analysis provide the 
necessary database for comparison during Phase 2 and Phase 3. In addition, data 
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collected throughout the baseline period (including building information, site 
observations) were analysed.  

 Phase 2 Intervention – a 8-month intervention period is designed to instill good 
behaviour pertaining to energy saving. A series of activities will be held covering 
education, smart energy metering feedback system and competition. 

 Phase 3 Post-intervention – to ensure that the students uphold to the good 
behaviour instilled from the previous year, a 1-month post-intervention will be held to 
observe students behaviour without the series of intervention activities being held. 

 
The following results were obtained thus far half way into the program.  

 Overall - a 10% reduction in actual energy consumption (kWh) was recorded 
across all 10 schools thus far from January to June 2017. However, one of the 
participating schools increased 39% in student intake in 2017 compared to 2016 
(Table 3) thus using the normalised figures by the number of students would be 
more appropriate in this case for the rest of the discussion. As such a 13% 
reduction in actual energy consumption (kWh) normalised by student number 
was achieved from January to June 2017 (Table 2).  

 Comparison - Experimental School Group achieved a 14% reduction  
 

Table 2 Results 

2016 vs 2017 
All 

(Experimental + 
Control) (kWh) 

All (Experimental + 
Control) 

(kWh/student) 

Experimental 
School  

(kWh/student) 

Control School  
(kWh/student) 

Jan – Mar 
2017 

+4% 0% -1% 2% 

Apr – Jun 
2017 

-15% -19% -19% -18% 

Jan – Jun 
2017 

-10% -13% -14% -12% 

Table 3 Changes in Number of students from 2015-2016 to 2016-2017 per 
participating school 

 

2015-2016 2016-2017 
% Student 

No. School No. of Class No. of Student No. of Class No. of Student 

School 1 11 270 15 375 39% 

School 2 25 682 25 715 5% 

School 3 24 659 24 660 0% 

School 4 12 283 12 301 6% 

School 5 25 729 26 712 -2% 

School 6 26 700 26 690 -1% 

School 7 30 956 30 953 0% 

School 8 24 600 24 603 1% 

School 9 30 949 30 954 1% 

School 10 26 608 24 630 4% 

Overall 233 6436 236 6593 2% 
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Figure 2 Results 
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The following aspects are highlighted for discussions of the results:  

 Periods – the project took place thus far was characterised by the following two 
periods: o  

 January – March 2017 – A relatively low reduction rate was achieved during the 
first 3 months of the program because the smart metering system was only 
completed in March / April 2017. In addition, the education intervention during the 
first 3 months were not too intensive (Let’s Get Active, 5-minute shower 
challenge at home, Earth Hour), thus the energy saving was not significant 
during this period (All 0%, Experimental School Group -1%, Control School 
Group +2%) (Table 2, Figure 2a, 2b, 2c).  

 April – June 2017 – The visualising smart metering system was completed 
during this period and also a more intensive education program took place during 
the period (Easter Energy Bunny Competition), hence, the energy saving was 
more significant during this period (All -19%, Experimental School Group -19%, 
Control School Group -18%) (Table 2, Figure 2a, 2b, 2c).  

1.  

 Weather – The temperature difference was higher in the early months of 2017 
(January – March) in comparison to the later months (April – June), thus under 
similar temperature situation, the energy savings achieved in April – June was a 
solid prove to suggest that the program was successful in reducing energy usage 
(Figure 2a, 2b, 2c).  

 

 Student number – As mentioned earlier, referencing the absolute energy 
consumption without taking into account the number of student intake fluctuation 
could distort the picture considering the case with School 1 with 39% increase in 
student intake. A slight increase in School 1’s energy consumption (kWh) as 
shown in Figure 3d but a significant drop when the energy consumption (kWh) is 
normalized by the number of students as shown in Figure 3f21. Thus, the 
number of student intake should be taken into account when considering the 
changes in School’s energy consumption.  

 

 Experimental vs. Control School Group – Experimental School Group (-14%) 
slightly excel in energy reduction compared to the Control School Group (-12%) 
(Table 2), suggesting having the visualising feature creates a positive impact in 
energy reduction and the program was on track thus far achieving the -15% 
reduction target.  

 

 Consistency – Across the 10 schools, the majority of the schools achieved 
energy reduction except for School 9 (Figure 2d, 2e, 2f, 2g) suggesting the 
energy reduction is consistent across schools. The credit goes to the education 
intervention that took place.  

 

 School feedback - Through informal face to face discussion with the 
participating schools’ principals and teachers, most schools were pleased with 
the electricity bill reduction and students’ behavioural change thus far. Upon 
further discussion with the Principals and Teachers, it was found that most 
Schools wished more could be done apart from energy saving. Energy saving is 
recognised as only one segment of the more holistic personal carbon emission. 
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The Schools wish to see campaign that can mobilise the students to do 
furthermore with their personal carbon emission, extending into their daily 
routine.  

 
The program thus far proved to be successful in mobilising behavioural change to 
achieve realistic energy reduction in the participating primary schools as a case study. 
However, it should be noted that the case study was still half way through the program, 
as such, no conclusive fact can be drawn at this stage to suggest if the provision of 
visualising data indeed affects behavioural change. Furthermore, there were multiple 
factors which could have affected the results including student number, difference in 
school culture in advocating for behavioural change, school’s micro-climate which could 
have affected the need to use energy. Therefore, a further study is warranted to examine 
other factors which could have affected behavioural change apart from the provision of 
visualising energy feature. 
 

Related Publications 
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Case 21 

Case study title 

Characterizing user behavior and user-preferences for uncertainty quantification in the 

life cycle assessment of air conditioning systems 

 

Contributors 

 Lynette Cheah, Singapore University of Technology and Design (SUTD), 

Singapore 

 Stephen Ross, Singapore University of Technology and Design (SUTD), 

Singapore 

 

Contribute to other subtasks 

Subtask A, C 

 

When and where 

 2014 

 University staff offices in the former SUTD campus, Dover Road, Singapore 

 

Building(s) description 

 Building type: university office building 

 Total conditioned floor area: (unknown) 

 Number of storeys: 4 

 Location: Singapore – tropical climate 

  

 

Investigated Office description 

 Office type: single occupant closed office rooms  
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 Fifteen comparable offices investigated, each measuring about 12 m2 

 Each office incorporated one identical 2.5-kW rated inverter-type air-conditioning 

(AC) system with outdoor compressor and indoor mounted wall unit 

 Location: on the ground to 4th floor of the former SUTD Dover Campus building 

 

Occupant type 

 University staff with variable occupancy hours 

 Integrated sensor units were deployed, each measuring the internal 

environmental conditions of a single office 

 Measurements recorded at 5-minute intervals, 24 hours per day for a period of 5 

months (July – November 2014) 

 Recorded variables that represent proxy measurements of office users’ behavior 

 Patterns in occupancy, AC use and user preferences were determined from 

these proxy measurements 

 

Description of the datasets 

Recorded information on internal environmental conditions: 

 Temperature 

 Humidity 

 Light intensity 

 Noise 

 Motion 

The course of a day was divided into four states of user behavior based on 

cooling system usage and occupancy of the room: 

 on & in  - system cooling and room occupied  

 on & out  - system cooling and room unoccupied  

 off & in  - system idle and room occupied  

 off & out  - system idle and room unoccupied  

States of user behavior were characterized by fitted probability distributions to be 

employed in a stochastic life cycle assessment model 

Behavioral inputs of the product life cycle use-stage model: 

 Probability of users being in 4 distinct states of behavior 

 Users’ preference for office internal temperature  

 

 

 



 

105 

 

 

Figure 1: Probability distributions characterizing time spent by office users in four 

behavioral states combining occupancy and air-conditioning use 

 

Data and model’s availability 

Data might be available upon request. More information is available in the published 

journal article and masters student thesis. 

 

Summary 

The life cycle environmental profile of energy-consuming products, such as air 

conditioning (AC), is dominated by the products’ use phase. Different user behavior 

patterns can therefore yield large differences in the results of a cradle-to-grave 

assessment. Although this variation and uncertainty is increasingly recognized, it 

remains often poorly characterized in life cycle assessment (LCA) studies. Today, 

pervasive sensing presents the opportunity to collect rich data sets and improve profiling 

of use-phase parameters, in turn facilitating quantification and reduction of this 

uncertainty in LCA. This study examined the case of energy use in building cooling 

systems, focusing on global warming potential (GWP) as the impact category. In 

Singapore, building cooling systems or air conditioning consumes up to 37% of national 

electricity demand. Lack of consideration of variation in use-phase interaction leads to 

the oversized designs, wasted energy, and therefore reducible GWP.  

High-resolution data on air-conditioning usage patterns and user behavior were collected 

from university staff offices in Singapore, spanning a period of 5 months from July to 

November 2014. Fifteen single-occupancy offices of comparable size were assessed, 

each incorporating one 2.5-kilowatt (kW) rated inverter-type air-conditioning system with 

outdoor compressor and indoor mounted wall unit. Data were collected from the 15 

offices using integrated sensor units measuring internal environmental conditions of one 

individual office. Sensor measurements recorded at 5-minute intervals included: room 



 

106 

 

temperature, humidity, lighting, motion, and noise. Usage of the cooling system and 

room occupancy were determined by analysis of trends in the proxy measurements 

collected. Observed trends indicated rapid response in the recorded variables to 

changes in cooling system usage and office occupancy, validating the robustness of the 

data. 

Occupants’ time was characterized by probabilistic distributions in four states of user 

behavior. The quantified interindividual variability and other use-phase variables were 

propagated in a stochastic model for the life cycle of air-conditioning systems. Simulation 

was conducted by way of Monte Carlo analysis. Analysis of the generated uncertainties 

identified plausible reductions in energy use and thus global warming impact through 

modifying user interaction.  

 

Key Findings 

 Occupants relied on automated thermostat control to manage cooling throughout 

working hours, regardless of occupancy time 

 Overall 27% of the total life cycle emissions generated, and 33% of the use stage 

emissions, occurred from energy spent cooling air when there was no occupancy 

 Although the ‘off & out’ state accounted for by far the largest period of time, and 

the largest proportion of GWP, the low power drawn by the system while idle 

resulted in a very low contribution to uncertainty in results. 

 If time residing in the ‘on & out’ state could be minimized and transferred to the 

‘off & out’ state, the potential exists in this case for up to 24% reduction in overall 

life cycle GWP. Furthermore, users adjusting their behavior to raise preferred 

office temperature setting by 1°C could result in further life cycle emissions 

reduction of 8%. 

Designers concerned about the environmental profile of high energy products and 

systems in the building environment need better representation of the underlying 

variability in use-phase data to evaluate the impact. This study suggests that user 

behavior can be reliably inferred through proxy measurements of environmental 

conditions and the proliferation of pervasive sensing. 

 

Related publications 

 Ross, S. and Cheah, L. (2016) Uncertainty quantification in life cycle 

assessments: interindividual variability and sensitivity analysis in LCA of air-

conditioning systems. Journal of Industrial Ecology. doi:10.1111/jiec.12505 

 Feng, J., (2015), Variation in User Behavior and its Impact on the Electricity 

Demand of Air Conditioner Use, Masters thesis, Singapore University of 

Technology and Design. 
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Case 22 

Case study title 

Thermal Comfort in Different Types of Learning Spaces in Tropical University Campus 

 

Contributors 

 Stephen Siu Yu LAI, Department of Architecture, School of Design and 

Environment, National University of Singapore 

 Ji ZHANG, Solar Energy Research Institute of Singapore, National University of 

Singapore 

 

Contribute to other subtasks 

Subtask E: Integration of occupant behavior models with BEM programs 

 

When and where 

Feb-Apr of 2015, 2016 and 2017, Multiple buildings within National University of 

Singapore campus 

 

Building(s) description 

 Owner type: University 

 Building type: education institution 

 Total floor area: N.A. 

 Number of stories: varies 

 Location (city, country): Singapore 

 One or two pictures: The types of spaces, locations of survey and number of 

respondents for each year are illustrated in the table below.  
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Occupant type 

 Users of different types of learning spaces in university campus, such as fully air-

conditioned indoor space, hybrid indoor space, hybrid semi-outdoor space, and 

naturally ventilated semi-outdoor space.  

 

Description of the datasets 

Data points Collection frequency Collection period Format 

On-site measurement of 
environmental 
parameters and 
questionnaire interview 
of leaning space users 
using thermal comfort-
related indices 

Each interview lasts 5-8 
minutes 

2 months Excel data -> Tableau 
and SPSS 

 

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Not available for public access at the time being,  

 

Summary 

The environmental quality of learning spaces has a significant impact on users’ health, 

productivity and psychology. Studies have shown that conducive and comfortable 

learning environment can promote active learning which may eventually enhance 
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conceptual understanding of the learners. Thermal discomfort such as overheated or too 

cold classrooms can be associated to physical stress (thermal stress) and therefore be 

responsible for illnesses and poor performance of the students.  

Nowadays, facilitated by information technology such as internet and web-based virtual 

teaching and learning, spaces for intensive and prolonged study are no longer bounded 

primarily by interior spaces and are extended to semi-outdoor and outdoor spaces within 

a campus. Whereas users in this diverse environment are in closer contact with the 

natural environment, they are also prone to the fluctuation of climatic conditions, and this 

poses new challenges to architectural designer and researchers dedicated to creating 

flexible yet conducive learning environment.  

Given the characteristics of the tropical climate which is typically hot and humid 

throughout the whole year, how to create a comfortable learning environment for these 

different types of spaces, especially through passive design strategies, becomes thus 

not only necessary but also crucial. This study examined the thermal comfort of users of 

various types of learning spaces within a tropical university campus with different types 

of cooling and ventilation strategies, such as centralized air-conditioning, hybrid of 

natural and mechanical ventilation and natural ventilation. The difference in users’ 

thermal sensation, thermal expectation and thermal satisfaction across different types of 

spaces are compared. The relationship between thermal sensation and predicted 

thermal comfort using the PMV model and the adaptive model was also examined.  

 

Key Findings 

(Based on the data collected in 2015) 

 Hybrid space with a mixture of natural and mechanical ventilation has greater 

potential be provide comfortable thermal environment for users as compared to 

air-conditioned spaces and naturally ventilated spaces in the tropical climatic 

context. 

 The relatively higher neutral operative temperature and the relatively wider 

acceptable operative temperature range for both types of hybrid spaces imply 

that users in hybrid spaces may have a higher thermal tolerance level and a 

wider range of temperature for adjustment than those in purely air-conditioned or 

naturally ventilated spaces.   

 PMV had the lowest predictive power for thermal sensation vote for naturally 

ventilated semi-outdoor space, implying the inappropriateness of applying the 

PMV model for naturally ventilated space. 

 PMV tends to overestimate thermal sensation and predicts a result that is 

relatively warmer, especially for hybrid spaces.  

 As compared to adaptive model, PMV model tends to overestimate the 

percentage of respondents who may feel thermally neutral for both hybrid and 

naturally ventilated spaces.  

 In comparison, adaptive model also seems to produce overestimation for hybrid 

indoor space. However, adaptive model produces quite accurate predictions for 

hybrid semi-outdoor space using the according to the 80% acceptance range of 
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operative temperature, and it also produces an accurate prediction for naturally 

ventilated semi-outdoor space according to the 90% acceptance range. This 

suggests that adaptive model might be a more appropriate model to be 

implemented in thermal comfort study for hybrid or naturally ventilated spaces 

than the PMV model.  

 

(The data collected in 2016 and 2017 is in the process of analysis.) 

 

Related publications 

 Lau, S. Y., Zhang, Ji; (2016) Thermal Comfort in Different Types of Learning 

Spaces in Tropical University Campus. Paper accepted by the International 

Workshop on Implications of Occupant Behaviour for Building Operation & 

Design, Vienna University of Technology, Vienna, Austria. 
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Case 23 

Case study title 

Impact of Occupancy on Energy Consumption in Office Buildings 

 

Contributors 

Ruidong Chang, Yujie Lu, Department of Building, National University of Singapore, 

Singapore 

 

Contribute to other subtasks 

Subtask D 

 

When and where 

Floor 9 of a 1.5-year-old institutional  building 

 

Floor description 

 Building type:  institutional building (Floor 9 and 10 are office spaces) 

 Floor area: (1,944 m2) 

 Location (city, country): Singapore 

 One or two pictures 
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Occupant type 

 Typical office workers in open and private office spaces 

 Office workers can opt to select flexible working hours. Four prevailing types of 

work schedules on weekdays: 9am–6:45pm, 8:30am–6pm, 8am-5:30 and 

7:30am–5pm. The occupants don’t work on weekends. 

 

Description of the datasets & models 

Information of the investigated floor 

 Room function 

 Realistic zoning 

 Lighting, plug load and ACMV schematic diagram layout 

Information of occupancy: 

 Observations (counting) on occupancy at 30-minutes interval from 8:00 am to 

7:00 pm were conducted on one week (April 11-17, 2017) including four working 

days (April 11, 12, 13, 17, 2017) and three holidays (April 14 of public holiday 

and April 15-16 of weekend). The counted occupancy during only four working 

days form real occupancy schedules.  

 A questionnaire was developed to capture key parameters of occupant behaviors 

including first arriving time, last departure time, and meeting duration. These 

parameters were subsequently used as inputs in Occupancy Simulator 
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(occupancysimulator.lbl.gov), to generate simulated occupancy schedules on the 

same days. 

Information of energy consumption: 

 Plug load at 15-minutes interval  

 Lighting energy consumption at 15-minutes interval  

 HVAC energy consumption at 15-minutes interval  

 Total energy consumption at 15-minutes interval 

Models for analysis: 

 Occupancy Simulator (occupancysimulator.lbl.gov) 

 Pearson and Spearman correlation analysis, paired-sample t-test and Wilcoxon 

signed-rank test 

 Simple and multiple linear regressions 

 

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Available upon request.  

 

Summary 

Currently, the dominant approach of the environmental impact assessments of buildings, 

including comparing the energy consumption of buildings, is to normalize the impacts by 

building size, typically defined as gross floor area. However, this approach neglects the 

impacts of occupancy on building energy consumption, and there is a growing need to 

develop occupancy patterns-based indicators to assess the sustainability performance of 

buildings. Unfortunately, real occupancy is highly stochastic and could be significantly 

different from the designed occupancy schedule. This calls for a holistic understanding 

of how occupancy patterns impact the environmental performance of buildings, and 

whether real occupancy in buildings could be accurately simulated. This study provides 

a holistic examination of the associations among the real/simulated occupancy and 

building energy consumption, enabling developers and researchers to further improve 

the Occupancy Simulator (occupancysimulator.lbl.gov), and to develop occupancy 

patterns-based sustainability assessment indicators of buildings. 
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Based on a case office building in Singapore, this study tests the accuracy of Occupancy 

Simulator developed in Subtask D in predicting the real occupancy in a building, and 

examines the impacts of occupancy on building energy consumption. First, the designed 

and observed peak occupancy were inputted in the simulator, with other key parameters 

remaining the same, thereby generating two simulated occupancy schedules. The two 

simulated schedules were compared with each other and, with the real occupancy, to 

assess the accuracy of the simulated occupancy. Then, the impact of occupancy on 

building energy consumption was evaluated through two linear regression models, 

including simple linear regression using total occupancy data, and multiple linear 

regression using occupancy data of different zones. The two linear regression models 

were utilized to assess the impact of occupancy on four types of energy consumption, 

namely plug load, lighting, HVAC and total energy consumption, thereby generating 8 

scenarios. The three datasets of occupancy schedules, namely the real occupancy 

schedule, the simulated schedule based on designed peak occupancy, and the 

simulated schedule based on observed peak occupancy, were used as inputs in the 8 

scenarios, thereby generating 24 regression equations. By comparing the 24 regression 

equations and the associate R2 statistics, the different degrees of impacts of both real 

and simulated occupancy on various forms of building energy consumption were 

revealed. 

Total occupancy 

Open office 

Meeting rooms 

Auxiliary space 

 

1. Total energy 

2. Plug load 

3. Lighting 

4. HVAC 

  

Real occupancy Simulated occupancy A Simulated occupancy B 

Correlations 

Simple and 

multiple 

regressions 

  

Occupancy in zones 

Total occupancy 

Open office 

Meeting rooms 

Auxiliary space 

  

  

Occupancy in zones 

Total occupancy 

Open office 

Meeting rooms 

Auxiliary space 

  

  

Occupancy in zones 



 

115 

 

 

Key Findings 

 

 

 The simulated occupancy schedule has a fairly high correlation with real 

occupancy schedule (R2:0.6-0.7). However, when differentiating the occupancies 

in various zones, the correlations become weaker. Specifically, the correlation 

coefficient between real and simulated occupancy for open office is 0.5-0.6, and 

for meeting room is 0.3-0.4. The simulator also achieves high consistency, as the 

correlation coefficient between the two simulated occupancies based on design 

and observed peak occupancy achieves 0.9. 

 In reality, unpredictable variations to occupancy i.e., stochastic events, such as 

department retreat and guest visitation, currently could not be captured by 

Occupancy Simulator, which prohibits the simulated occupancy to have an even 

higher correlation with real occupancy. 

 Many buildings suffer from the low occupancy levels during their use. In this 

study the observed peak occupancy, which is only around 80% of the designed 

peak occupancy, only appears at a few time points during the observation. Thus, 

both the simulated occupancy schedules based on the designed and observed 

peak number of occupants overestimate the occupancy. The Occupancy 

Simulator (occupancysimulator.lbl.gov) may have overestimation issues.  

 The regression analysis reveals that occupancy has a larger impact on plug load 

(R2 around 0.4) than the energy consumption of lighting (R2 around 0.1) and 

HVAC (R2 around 0.1) because in this case building occupants have little 

interactions and/or control over the building systems such as lighting and HVAC 

that follow daily routine. The results clearly show that the impact of occupancy on 

building energy consumption is strongly moderated by different functions of 

building spaces. The variance of HVAC energy consumption is explained more 

by occupancy in the area of the open office, while the variance of lighting energy 

consumption is more explained by occupancy in meeting rooms. Even in 
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buildings with minimum interactions with occupants, like the building in this study, 

the regression results show occupancy in different zones could explain around 

40% variance of total energy consumption of buildings. 

 Because the simulator could not capture all stochastic events in reality, the R2 

between the simulated occupancy and energy consumption in most cases is 

lower than that between real occupancy and energy consumption. But 

interestingly, the regression of simulated occupancy and HVAC energy 

consumption has higher R2 in this case study. Reasons behind this need further 

exploration.  

Despite above findings, it could be a challenge for office users to determine the input 

parameters needed for Occupancy Simulator, such as the first arrival and last departure 

time of occupants, and the meeting times and durations for different meeting rooms. As 

many buildings do not have occupancy sensors, questionnaire surveys or interviews 

become the only viable approaches to obtain these parameters. However, surveying 

occupants does not necessarily generate credible information, as this study reveals the 

real arrival time of some occupants in the office is significantly later than their reported 

time in the survey. A more reliable way of collecting data so as to improve the 

applicability of the simulator needs to be further explored. 

Recommended future work include: (1) improving the Occupancy Simulator through 

considering the low occupancy levels of many buildings during their actual use and 

subsequently overcoming the overestimation issue, (2) conducting large-scale 

investigation of installing occupancy sensors on buildings so as to run data mining and 

machine learning, thereby generating more realistic occupancy schedules, (3) extending 

the study for whole building analysis and other building types with different 

countries/cultures and (4) exploring the development of occupancy patterns-based 

sustainability assessment indicators of buildings. 

 

Related Publication 

 Ruidong Chang and Yujie Lu (2017). Calibration and advancement of occupant 

simulator used in high density institutional and office buildings. In preparation. 
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Case 24 

Case study title 

Correlation between occupants and energy consumption 

 

Contributors 

Cheol Soo Park, Ki Uhn Ahn, School of Civil and Architectural Engineering, 

Sungkyunkwan University, South Korea. 

 

Contribute to other subtasks 

Subtask A: Occupant action models in commercial buildings 

 

When and where 

2015, A laboratory room in the Sungkyunkwan University, Suwon, South Korea 

 

Room description 

 Owner type: University 

 Room type: A laboratory room in the University 

 Total floor area: 287.4 sf 

 HVAC: A ceiling-mounted electric heat pump (EHP) 

 Location (city, country): Suwon, South Korea 

 One or two pictures: 

 

 

Occupant type 

 Seven people (MS and Ph.D. students) 

 Occupants are free to enter/leave and control the indoor condition according to 

their preferences. 
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Description of the datasets 

Data points Collection frequency Collection period Format 

The number of 
occupants 

1 minute. 2 weeks JPG (the room is 
captured as an image 
file) 

CO2 level 1 minute 2 weeks XLS 

Window opening ratio 1 minute 2 weeks JPG  

Action of occupant’s 
opening a window 

1 minute 2 weeks JPG 

Door opening ratio 1 minute 2 weeks JPG 

Action of occupant’s 
opening a door 

1 minute 2 weeks JPG 

Electricity power 
consumption of EHP 

1 minute 2 weeks JPG 

Action of occupant’s 
controlling EHP 

1 minute 2 weeks JPG 

Air temperatures at 
each occupant’s desk 

1 minute 2 weeks XLS 

Electricity power 
consumption by 
personal heaters 

1 minute 2 weeks XLS 

Outdoor air temperature 1 minute 2 weeks XLS 

 

 
 

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Not available. The data will be used for the follow-up study and publication.  

 

Summary 

Although it is widely acknowledged that occupants play a critical role in building energy 

consumption, the characteristics of occupants are not well-represented in building 

simulation. Many statistic and data-mining technologies have been applied to develop a 

reliable occupant model. In contrast, rather than attempting to develop the occupant 
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model, this study aims to investigate the correlation between the occupant behavior and 

energy consumption based on a series of experiments.  

First, this study dealt with the randomness of the occupants’ presence and behavior. The 

degree of randomness was verified using a Normalized Cumulative Periodogram (NCP) 

based on a random walk hypothesis. In addition, the correlation between occupant and 

energy consumption was investigated using the wavelet coherence.  

In this study, while the occupants’ presence had a randomness, it was not strongly 

correlated to the energy consumption. The occupants’ active action to control a 

heating/cooling system (turn on/off) was correlated to the energy consumption. In 

contrast to the occupant’s presence, the occupants’ active action did not follow the 

random walk, and it had no particular frequency. This means that it is difficult to predict 

the control action of occupants with a specific time interval. 

 

Key Findings 

 There is a significant difference in individual preference with respect to the indoor 

condition. 

 Occupants’ presence in a university laboratory has a randomness, but it is not 

strongly correlated to the energy consumption. 

 Occupants’ active action is more correlated to energy consumption than 

occupancy. 

 Occupants’ action does not follow the random walk, but it has no particular 

frequency that can be predicted. 

 

 
Figure 1 Different types of buildings for occupant behavior study (the arrows indicate that 

the location can vary) (excerpted from [2]) 
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Related publications 

 Ahn, K.U., Park, C.S. (2015). Time series correlation between occupants and 

energy consumption, Proceedings of the 14th IBPSA Conference, December 7-9, 

Hyderabad, India 

 Ahn, K.U., Park, C.S. (2016). Correlation between occupants and energy 

consumption, Energy and Buildings, In press 
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Case 25 

Case study title 

A Framework for Quantifying the Impact of Occupant Behavior on Energy performance 

of single-family detached houses  

 

Contributors 

Anna Laura Pisello, Department of Engineering – CIRIAF Interuniversity research centre 

on pollution and environment Mauro Felli – University of Perugia, Italy 

 

Contribute to other subtasks 

Subtask D 

 

When and where 

A 40/50-year-old residential building, in central Italy temperate climate 

 

Building(s) description 

 Building type: single family residential building 

 Total conditioned floor area: 513 m2 

 Number of stories: 3 

 Location (city, country): Perugia, Italy  

 One or two pictures: 

 

 

Occupant type 

 In order to realistically characterize building occupancy, dedicated attitudes 

survey was elaborated and submitted to all the occupants of the house. As 
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expected, such survey highlighted the very weak and discontinuous occupancy 

schedule of the indoor thermal zones, compared to classic building simulation 

schedules which would overestimate building energy consumption prediction. 

The survey campaign by means of questionnaire was also carried out together 

with field microclimate indoor-outdoor monitoring campaign and bills assessment 

about electricity and natural gas for cooling-lighting and heating, respectively.  

 The occupancy profiles were firstly assumed to be consistent to standard 

occupancy and therefore, they were fitted according to the survey results, 

highlighting the relatively much weaker energy need and internal gain 

characterizing the real occupancy compared to classic ones used in this case 

study at preliminary stage (i.e. UK's National Calculation Method). 

 

 

 

Description of the datasets 

Information of the investigated residential building 

 HVAC systems details and operations 

 Field survey about thermal zone function: realistic zoning 

 Number of occupants in each zone and weekly agenda with varying season 

during the year 

 Lighting schedule according to occupancy field analysis 

 Indoor microclimate parameters as monitored in the attic thermal zone (non-

occupied), such as air temperature, relative humidity, superficial temperature of 

roof, ceiling, walls, air velocity, mean radiant temperature. 

 Outdoor microclimate parameters as monitored in the house garden (non-shaded 

area), such as air temperature, relative humidity, global solar radiation above a 

horizontal plane, global solar radiation reflected by the roof, air velocity and main 

direction. 
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 Thermal transmittance values measured in all the opaque walls, ceilings and 

roof. 

Investigated the impact of real occupancy in low-density buildings on the energy 

consumption: 

 Elaboration of the baseline model 

 Calibration and validation of the model according to data collected through field 

surveys, (i) indoor microclimate monitoring survey and (ii) real occupancy survey 

 Quantitative analysis of the energy requirement overestimation imputable to 

classic occupancy schedules, in low-density occupied houses (e.g. about 1 

person per 150 m2) 

Inputs of the baseline model: 

 UK's National Calculation Method implemented in DesignBuilder simulation 

engine for residential spaces.  

 Physical characterization of the building in order to minimize possible sources of 

prediction errors not imputable to occupancy.   

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Available upon request. More information is available in the published journal 

article. 

 

Summary 

This study presents a framework for quantifying the impact of family-specific occupant 

behavior in detached house, where the occupancy is typically less dense and less 

repetitive than classic office buildings or multifamily residential buildings, where thermal 

zones are characterized by high level of occupants’ density and the actions carried out 

within these spaces are in general more repetitive and better predictable.  

In this view, a building dynamic simulation model has been elaborated thanks to a 

variety of field experimental analysis such as indoor microclimate, outdoor 

meteorological conditions, HVAC system information, envelope component thermal 

transmittance measurements, energy bills analysis and finally indoor occupancy 

surveys. Occupancy schedules framed thanks to these field surveys highlighted the 

single-family schedule in a variety of thermal zones, which occupancy is very time 

depending and personal attitude depending, since the spaces at the disposal of each 

occupant (i.e. a member of the family) is much larger compared to classic residential 

buildings. Therefore, such case studies may not be effectively identified through typical 

residential schedules by simply defining a dynamically variable thermal power per 

square meter, since these values overestimate the energy need of single-family 

detached houses.  
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Recommended future work includes: (1) developing more realistic occupant behavior 

styles based on large-scale survey of occupants in detached houses in suburban areas, 

(2) investigating the energy intensity related to occupancy with varying climate 

conditions, by correlating energy need with occupancy intensity per square meter or 

other building-design-dependent variables, (2) pilot testing the methodology in real 

design or retrofitting projects of detached houses. 

 

Key Findings 

 The occupant behavior style of single-family large-surface houses needs 

particular attention when modeling thermal-energy behavior of detached house, 

since it hugely differs with respect to classic building occupant simulators. 

 The space at the disposal of each occupant is typically larger than classic 

residential buildings, meaning that the house tends to be less energy intense and 

energy needy per square meter. 

 Building occupancy should be modelled after investigating real occupancy in 

case of Post-Occupancy Assessment campaigns, or by means of predictive 

models which take into account this building peculiarity. 

 As further development of the study, field surveys are therefore recommended in 

order to develop a reliable wide database of occupancy models identifying this 

building typology, which represents a non-negligible category in both Europe and 

other countries in suburban areas.  

 

Related publications3 

 Pisello, A.L., Cotana, F. The thermal effect of an innovative cool roof on 

residential buildings in Italy: Results from two years of continuous monitoring 

(2014) Energy and Buildings, 69, pp. 154-164. DOI: 

10.1016/j.enbuild.2013.10.031 

 Pisello, A.L., Rossi, F., Cotana, F. Summer and winter effect of innovative cool 

roof tiles on the dynamic thermal behavior of buildings (2014) Energies, 7 (4), pp. 

2343-2361. DOI: 10.3390/en7042343 

  

                                                

 

3 The mentioned publications concern the case study characterization for energy retrofit purpose. The detailed post-occupancy 

study is still under development for journal submission. 
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Case 26 

Case study title 

How peers’ personal attitudes affect indoor occupancy in office buildings: Results from a 

continuous monitoring campaign  

 

Contributors 

Cristina Piselli, Anna Laura Pisello, CIRIAF – Interuniversity Research Centre, 

Department of Engineering, University of Perugia, Italy 

 

Contribute to other subtasks 

Subtask D 

 

When and where 

A 9-year-old research office building, in the temperate climate context of Perugia, in 

central Italy 

 

Building(s) description 

 Building type: research office building 

 Total conditioned floor area: 19,461 ft2 (1,808 m2) 

 Number of stories: 2 

 Location (city, country): Perugia, Italy 

 One or two pictures: 

  

Figure 3. View of the building from the East side, and typical office indoors.  
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Figure 4. Building model layout. 

Occupant type 

 A group of peer employees working in different rooms of a research center 

building characterized by the same end-use, i.e. researchers’ office rooms, were 

considered. The occupants are represented by peers performing the same job, 

with similar age (i.e. from 25 to 35 years old) and educational level, and 

theoretically the same working schedule on weekdays, i.e. 9am–1pm and 3pm–

7pm. The occupants don’t work on weekends. 

 The building hosts around 30 office rooms. Occupancy of 5 rooms out of 30 have 

been monitored for one whole year. The 5 monitored offices are all located on 

the first floor and are on the same South-West oriented side of the building. They 

are all almost rectangular shaped with the same size. They are provided with two 

big windows on the South-West side and are equipped with the same HVAC 

system and lighting system. Heating and cooling systems operate between 

October, 15th –April, 15th and June,1st –September, 30th, respectively. 

Additionally, each office is equipped with a dedicated thermostat, which is set up 

by the occupants in terms of desired ambient temperature and mechanical 

ventilation rate, according to their personal needs and thermal perceptions. Each 

office room is also equipped with two or three computers and hosts two or three 

people. 

Table 4. Summary of the five office rooms monitored. 

Room number 
Occupancy level  
[people per room] 

Monitored appliances 

1 3  3 desks with personal computer 

2 2 2 desks with personal computer 

3 2 2 desks with personal computer 

4 3 3 desks with personal computer 

5 2 2 desks with personal computer 

 

Description of the datasets 

Information of the investigated office building 
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 Room function 

 Realistic zoning 

 Building envelope systems 

 Air-conditioning system operation 

 Number and type of occupants in each zone 

 Lighting and plug load power density 

Monitoring of four energy and thermal comfort-related parameters influenced by 

occupants’ behavior inside five office rooms, through a wireless sensor network 

system (Figure 3): 

 Indoor air temperature 

 Level of illuminance on the work plane  

 Electricity consumption of the appliances 

 Opening/closing of door and windows 

 

Figure 5. Architecture of the monitoring system. 

Peer occupants’ behaviors were evaluated in the temperate climate context of 

Perugia, in central Italy and the following meteorological parameters were 

continuously monitored at the same time: 

 Outdoor dry-bulb temperature and air relative humidity 

 Wind velocity and main direction 

 Global and direct solar radiation over a horizontal plane 

 Rain fall rate 

Inputs of the building simulation model: 

 Standard occupancy schedules for office buildings according to the EnergyPlus 

database (UK’s National Calculation Method for Non-Domestic Buildings 

standard, http://www.uk-ncm.org.uk/) 

 Building fabric components, air-conditioning and lighting system according to the 

real building characteristics 

 TMY weather file for the city of Perugia according to the database by the U.S. 

Department of Energy, Energy Efficiency and Renewable Energy 

(https://energy.gov/eere/office-energy-efficiency-renewable-energy) 

http://www.uk-ncm.org.uk/
https://energy.gov/eere/office-energy-efficiency-renewable-energy
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Data and models availability 

Are data and/or models available to the Annex 66 participants? 

 Available upon request. More information is available in the published journal 

article. 

 

Summary  

Occupants’ behavior significantly affects building thermal-energy performance, and its 

prediction may become particularly hard in those buildings occupied by a wide variety of 

users. In fact, human attitudes and habits in interacting with system controls and building 

envelope influence indoor microclimate and energy needs. In this view, peer occupants 

are usually assumed to have an identical response to similar environmental conditions 

and in determining building thermal-energy performance. However, different peer 

occupants’ personal attitudes and habits can affect the indoor environmental behavior of 

buildings. In fact, despite most of the occupants can be identified as “peers” in terms of 

age, educational background, working schedule, indoor thermal perceptions, and control 

capability, they present substantially different behavior. This leads to significant 

discrepancies in the thermal-energy performance of different areas situated even in the 

same building position (same façade, orientation etc.). Therefore, peers’ personal 

attitudes represent a key variable to be considered while predicting the overall thermal-

energy behavior of buildings in dynamic conditions. In this view, the purpose of this case 

study description is to: 

 identify the different attitudes and energy behaviors of occupants typically considered 

as peers,  

 define how such divergent habits can influence the thermal-energy performance of 

the indoor building environment, and  

 compare the real behavior of peer occupants with the standard occupancy model 

usually considered in building dynamic simulation.  

To this aim, a group of peers working in a university office building was examined. In 

particular, five office rooms characterized by the same orientation, architectural layout, 

size, construction technology, and HVAC system were selected for the continuous 

monitoring of occupants’ attitudes during the course of one year. Key indoor 

microclimate indicators, i.e., indoor air temperature and illuminance over the work plane, 

and data about occupants’ daily attitudes in terms of electricity use, switching on/off of 

lights, and opening/closing of doors/windows were collected. Additionally, a survey 

among all the building occupants was carried out to support the experimentally collected 

data in identifying the different habits of the peers. Finally, the case study office building 

was investigated by means of thermal energy dynamic simulation while assuming the 

standard occupancy model for an office building (UK’s National Calculation Method for 

Non-Domestic Buildings standard, http://www.uk-ncm.org.uk/). Therefore, the real 

monitored occupants’ habits were compared with physical parameters simulated 

http://www.uk-ncm.org.uk/
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according to the standard schedules. In this perspective, the case study analysis wants 

to demonstrate how peers behave differently in their offices, despite their clear 

theoretical similarities. Moreover, the standard occupancy model is neither 

representative of specific occupants’ attitudes nor of their averaged behavior.  

All these components should be more carefully evaluated for elaborating reliable 

prediction models or post-occupancy assessment in buildings. Therefore, recommended 

future work include: (1) extending the study for other buildings (same and different 

typologies), (2) extending the study to different climate and cultural contexts, (3) 

developing more realistic occupant behavior schedules based on a large-scale survey of 

occupants specific for each climate and cultural context. 

 

Key Findings 

 

Figure 6. Occupants’ behavior simulation (red lines) results vs. monitored data in 
terms of a) indoor air temperature, b) illuminance over the working plane, c) 

equipment electricity consumption, and d) windows opening. 

 Occupants’ individual behavior represents a key variable affecting building 

management of large buildings even if the occupants can be theoretically 

assumed to be “peers”.  

 Significant discrepancies were found between the monitored rooms, 

demonstrating that typical peers do not behave the same, but require differential 

energy needs that should be considered while predicting thermal-energy and 

lighting behavior of massive institutional buildings. 

 Simplified standard models do not predict any occupant’s peak energy demand 

or individual preference. Moreover, the standardized implemented procedure is 

not even representative of the average occupants’ behavior and tend to 

overestimate energy needs (Figure 4). 
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 Peers’ door opening profiles seem to be related to personal preferences about 

working style, while window opening profiles completely change their trend, even 

for single offices, with varying the seasonal conditions. The simulated trend of 

natural ventilation entering the offices in summer appears to be rather consistent 

with the detected windows opening for some offices (Figure 4d). However, it is 

not generally representative of the random occupants’ habits. 

 

Related publications 

 Pisello, A.L., Castaldo, V.L., Piselli, C., Fabiani, C., Cotana, F. How peers’ 

personal attitudes affect indoor microclimate and energy need in an institutional 

building: Results from a continuous monitoring campaign in summer and winter 

conditions. Energy and Buildings, Volume 126, 2016, pages 485-497. 

 Pisello, A.L., Castaldo, V.L., Piselli, C., Fabiani, C., Cotana, F. Can we assume 

that peers behave the same? Results from a continuous monitoring campaign in 

an office building. CLIMA 2016 Conference. Aalborg, May 22-25, 2016. 
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Case 27 

Case study title 

Monitoring of energy performance and window opening behavior in a German office 

building 

 

Contributors 

Karin Schakib-Ekbatan, Marcel Schweiker, Andreas Wagner – Karlsruhe Institute of 

Technology, Germany 

Fatma Zehra Çakıcı - Ataturk University, Turkey 

 

Contribute to other subtasks 

Subtask D 

 

When and where 

An office building in Frankfurt, Germany, built in 2002 

Building(s) description 

 Building type: office building 

 Total conditioned floor area: 8585 m2 heated floor area 

 Number of stories: 2-level underground car park + 4 office floors + 1 floor 

apartments on top 

 Location (city, country): Frankfurt, Germany 

 One or two pictures: 

  

Figure 1. Exterior view of the KfW Ostarkade 

building from the South-East  

Figure 2. Ground floor plan of the building 
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Occupant type 

 Office workers, working as employees of the KfW bank  

 

Description of the datasets 

The dataset comprises three types of data which can be grouped with respect to outdoor 

conditions, indoor conditions, and actions of occupants or events. Table 1 summarizes 

the monitored data for all conditions as follows. 

 

Table 1.Monitored data 

Outdoor  Indoor  Behaviour 

Solar radiation [W/m2] 
Rain – amount [l/m2] 
Rain – event [yes/no] 
Light intensity– horizontal 
[lx] 
Light intensity - South [lx] 
Light intensity - East [lx] 
Light intensity - North [lx] 
Light intensity - West [lx] 
Outdoor temperature [°C] 
Wind – velocity [m/s] 
Wind – direction [°] 
CO2 content in air [ppm] 
Outdoor humidity [%rH] 

Room air temperature [°C] 
 Surface temperature [°C] 
Ceiling slab temperature [°C] 
CO2 concentration [ppm] 

 
 
 

Occupancy [0/1]* 
Window contact [0/1 ; 
Reed contacts]* 
Top light control [0/1 ; 
Reed contacts]* 
Sun protection [% of 
closure: 0% = open to 
100% = closed] 
Electricity 
consumption [kWh] 

 
 

*for analyses aiming at duration in terms of daily means, data were transformed from 10-

minute intervals to minutes  

 

A weather station is located on the top of the building, providing data regarding the 

outdoor conditions for all offices, such as temperature. However, the microclimate close 

to the different façades can differ, e.g., depending on the intensity and direction of wind.  

 

The office rooms can be grouped in four types; standard offices, traders’ offices, large 

offices and others with a special function in use. Due to this diversity it was decided to 

only analyze standard offices in terms of occupant behavior. Standard offices all have 

the same size (~20m2), facing mostly east and west (one is facing south). They have 

one fixed and two operable windows, internal top light windows above the doors (to 

allow for night ventilation through the atrium) and sun protection elements (operated 

both manually and automatically). They are occupied by one or two persons. 

 

Since the building was completed and started to be monitored in 2003, the starting year 

for the analysis was selected as 2004. The analysis period was from January 1st, 2004 to 

December 31st, 2009.  
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Besides the data of outdoor conditions, there are several data indicating changes, 

behaviors and events in the building. Among indoor conditions data, five data is 

available for all offices, which are presence of the occupant(s), window contact, top 

window control, room air temperature and use of sun protection, while others are not 

available for all offices, including CO2 concentration, surface temperature, component 

temperature and electricity consumption. A summary of the variables for monitored 

standard offices is shown in Table 2. For the analysis presented below, we concentrate 

only on data, which are available for all 16 rooms of the sample; therefore CO2-

concentration and surface temperature are not included. 

 

Table 2. Variables for monitored standard offices 
 

 

 Room 
ID 

Occupancy 
Window 
control 

Top 
window 
control 

Room air 
temperature 

CO2- 

Concen- 
tration 

Surface 
temperature 

East 

E01           

E02           

E03            

E04             

E05           

E06            

E07             

E08           

E09           

E10           

E11           

West 

W01            

W02            

W03           

W04           

W05             

W06           
 

 
 

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Data are available upon request from Marcel Schweiker or Andreas Wagner. 
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Summary 

This study is based on simple statistics as well as logistic regression analyses in order to 

evaluate how much the occupants interact with their building in a manner suitable to the 

building concept with natural ventilation. The findings show that behavior profiles of 

window opening give helpful hints regarding the interaction between building and 

occupants. The window opening times in winter are too long in 10 - 25% of the days. In 

10 - 40% of the times during summer the window opening does not support the building 

concept due to windows being opened while the outdoor temperature is higher than the 

indoor air temperature. These non optimal behaviors could be linked directly to an 

increased energy consumption in winter. In the summer case, prolonged window 

opening at high outdoor temperatures does not lead directly to a higher energy demand, 

because no cooling system exists. However, the increased heat gain leads to a higher 

demand for night ventilation, which in some cases is facilitated by an electrical fan. In 

such a way, the auxiliary energy demand is increased. 

In a recent study the data was taken to train and evaluate several classification 

algorithms for detecting occupant’s interactions with windows, while taking imbalanced 

properties of the available data set into account. The tested methods include support 

vector machines (SVM), random forests, and their combination with dynamic Bayesian 

networks (DBN). The results show that random forests outperform all alternative 

approaches for identifying the window status in office buildings. 

 

Key Findings 

 Study 1: If occupants are not informed about the building energy concept their 

behavior might cause higher energy consumption or longer periods of discomfort 

as their interactions do not match the designed usage patterns. 

 Study 2: Random forests appear to be an appropriate classification algorithm for 

detecting occupant’s interactions with windows, when the available data set 

shows imbalanced properties. 

 

Related publications 

 Schakib-Ekbatan, K.; Zakici, F. Z.; Schweiker, M. & Wagner, A. (2015). Does the 

occupant behavior match the energy concept of the building?  -  Analysis of a 

German naturally ventilated office building, Building and Environment, 84, pp. 142 - 

150. 

 Markovic, R.; Wolf, S.; Cao, J., Spinnräker, E.; Wölki, D.; Frisch, J. & van Treeck, 

Ch. (2017). Comparison of different classification algorithms for the Detection of 

User’s Interaction with Windows in Office Buildings, Energy Procedia, under peer-

review by the scientific committee of the CISBAT 2017 International Conference 
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Case 28 

Case study title 

The Influence of Occupant Behaviour on the Total Energy Consumption in Offices. 

 

Contributors 

 Ing. A. van der Aa, MSc. C. Jurado López, ABT, Delft, The Netherlands. 

 MSc. B. Giskes, TU Eindhoven, The Netherlands 

 

Contribute to other subtasks 

N/A 

When and where 

 ABT office at Delft, The Netherlands. 

 

Building(s) description 

 Building function: office 

 Building style: industrial, flexible and demountable 

 Automation level: lighting presence controlled. Thermal acclimation regulated by 

thermostat. Ventilation constant according to opening schedule (no CO2 

controllers). Automatized sun shadings. 

 Total conditioned floor area: 2,040 m2 

 Number of floors: 3 

 Location (city, country): Delft, The Netherlands 

 One or two pictures: 
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Analysis occupancy 

The occupant influence on the energy demand is studied by analyzing the breakdown of 

the total energy consumption. Measured and simulated data sets are used for this 

purpose. 

In the first place, the total electricity, heating and cooling consumption are 

monitored/simulated as follows: 

 The total electricity consumption of the building is monitored by smart meters. 

 The total heating consumption is monitored by an automated gas-metering 

reading. The existing analogue gas meter is monitored by a camera which reads 

the total gas consumption every 10 minutes. The readings are translated and 

recorded via an Application Programming Interface (API).  

  

 The total cooling consumption is calculated by law-driven software (EnergyPlus) 

and monitored for few days. 

In the second place, the energy related to different purposes is monitored/simulated as 

follows: 

 Control of workspace: plug-load meters are installed in different workspaces in 

order to study the electrical consumption related to the usage of the workspace. 

 Occupancy: the occupancy of the building is monitored by a camera which 

detects and tracks the motion of the building’s occupants. The entry or exit of an 

occupant to the building and different floors is recorded. 

 
       Data reading                     (b) Data processing          (c) Data analysis 

   (a) Data reading                           (b) Data processing                     (c) Data analysis 
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 Indoor temperature set points: the indoor temperature set points are monitored. 

 Control of lightings: the occupant influence on the lighting system is simulated 

according to the case study (presence based). 

 HVAC operating hours: based on building operating data. 

 

Description of the datasets 

Information of the investigated office building 

 Building characteristics 

o Envelop characteristics 

o Room function 

o Thermal zoning 

 System characteristics 

o Lighting zonings 

o HVAC schedule 

 Occupant behavior (use & operation of the building) 

o Occupancy 

o Opening hours 

o Manipulation capability on building operation (windows and partially sun 

shadings) 

 

Variables studied to analyze the impact of occupant behaviors on the energy 

consumption in offices: 

 Lighting power density (presence in areas with lighting sensors) 

 Plug-in electric equipment power density 

 Occupancy 

 

Inputs of the baseline model: 

 Envelop properties and equipment inputs based on an inventory of case study 

and ASHRAE Standard 90.1-2004.  

 Climate file created for this case study (Delft) extracting weather data from KNMI 

(2010-2016). 

 Occupancy schedules based on actual occupancy of the building. 

 Lighting power density and internal heat gains based on ASHRAE Standard 90.1-

2004. 
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Data and models availability 

Measured data set available 

Measured data set available upon request. 

 
 

Source 
Time 
resolution 

Measurement period 

Electricity 

Utility bills monthly 2010 - 2016 

Smart meters (incl. 
generation) 

15 minutes September 2016 - today 

Plug load meters 10 minutes January - March 2017 

Gas 
Utility bills annually 2010 - 2016 

Automated gas-
metering reading 

10 minutes March 2017 - today 

Thermal energy* 

Heating hourly 
April 2016 - today (daily)  
January 2017 - today 
(hourly) 

Cooling hourly 

September 2016 - today 
(daily)  
January 2017 - today 
(hourly) 

Temperatures 
(indoor air, 
inlet/outlet 
flows)  

Building 
Management 
System 

hourly March 2016 - today 

Occupancy 
Movement detection 
and tracking 

Continuous 
(every time 
there is a 
change) 

March 2017 - today 

*Estimated heating and cooling demand assuming constant flow. 

Model available 

Energy Plus model available upon request. 
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Summary 

The case study of the ABT office (Delft) aims at designing advance energy simulation 

models, energy monitoring and failure detection in offices and public buildings. In order 

to reach this goal, a better understanding of the actual energy consumption (electrical 

and thermal energy) in offices and public buildings is needed.  

The existing energy prediction models show large differences between actual and 

simulated data. This mismatch is due to different influencing parameters in predicted and 

actual energy demands. These parameters can be classified in 3 different groups: (1) 

physical characteristics of the building & systems, (2) weather data, and (3) occupant 

behavior (use & operation of the building). Several studies indicate that the occupant 

behavior is the dominant factor of the mismatch between predicted and actual data 

(responsible for 80% of the performance gap). Therefore, this research focuses on the 

influence of occupant behavior on the total energy consumption of offices. 

The goal of this study is to get a fundamental understanding of the influence of occupant 

behavior on the total energy consumption (electricity, heating and cooling) of the ABT 

office by using measurement and simulated data. The building is heated by gas boilers 

and cooled by an electrical chiller. The Building Management System (BMS) regulates 

the heating and cooling delivered to the building according to the indoor air temperature 

set points. 

Measured and simulated data sets are used to analyze information about actual energy 

consumption and how it is influenced by the occupant. The influence of the occupant 

behavior on the electrical energy is explained by ‘breaking down’ the measured 

electricity consumption by performing experiments that involve varying the settings of the 

installations in the BMS. The heating and cooling demand are studied by using 

simulated and measured data. The simulated data are obtained by using a law-driven 
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building energy simulation software to generate a fully calibrated simulation model of the 

ABT office. 

In contrast with previous studies, the results of this research show that the influence of 

the occupant behavior on the electrical and heating demand is minimal in offices with 

building operating system (indoor temperature sensors and limited manipulation of the 

users) and lighting sensors. The results show that the occupant behavior has an 

influence on the electrical energy up to 12% hourly, 4.7% monthly and 8% annually. The 

influence on the heating demand is estimated to have an hourly variation up to 17% and 

an annual variation up to 10%. The occupancy influence on cooling needs to be further 

analysed when more measured data are available. Figure 6 shows the electricity 

consumption breakdown and consumption variation due to occupant behavior or 

presence. 

 

Figure 7 Breakdown electricity consumption based on measured hourly electricity 
consumption and the mean consumption for occupied days. 

Recommended future work include: (1) Analysing occupancy influence on cooling 

demand based on electricity measurements, (2) studying the occupancy influence on 

heating demand based on hourly gas measurements, and (3) extending this study to 

other building types and building technologies. 

 

Key Findings 

 The occupant behavior has a minimal influence on building energy use in office 

buildings with BMS (semi-automated building). This influence is expected to be 

higher in non-automated buildings and lower in fully-automated buildings. 

 The influence of the occupant behavior on the electricity consumption can be 

estimated by analyzing the actual electricity demand. The profile variations of the 
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electricity demand can be explained based on information collected related to the 

operation and use of the building. 

 Quantifying uncertainty in energy predictions (in the design phase) allows 

decision makers to take better choices. The uncertainty due to the occupant 

behavior could be quantified by performing a sensitivity analysis with the building 

performance simulation software. 

Related publications 
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Case 29 

Case study title 

Measurement of total person-hours per year in order to normalize consumption by 

occupancy 

 

Contributors 

Ken Dooley, Granlund Consulting and Aalto University, Helsinki, Finland  

 

Contribute to other subtasks 

Subtask E: Applications in building design and operations 

 

When and where 

1. 2011 [1] 

a. Energy consumption was simulated with 9 different occupancy profiles which 

were based on combining 3 population densities (m²/person) and 3 different 

working hours per day (h). 

 

2. 2012 [2] 

a. Occupancy measurements using Bluetooth low energy RFID tags 

b. Occupant Surveys 

c. Walkthroughs and observations 

 

3. To be completed in 2016  

a. New techniques of people counting such as: 

i. People counting cameras  

ii. Occupancy measurements by recording the number of connections to 

the internet server  

iii. Smartphone tracking by monitoring wifi, Bluetooth low energy or by 

iBeacons 

iv. Occupant Surveys 

 

Building(s) description 

 Owner type: Private company 

 Building type: commercial office 

 Total floor area: 6,990 m2 

 Number of stories: 3 conditioned + 1 small floor with a large conference room 

 Location (city, country): Helsinki, Finland 

 Picture: 
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Occupant type 

 Office workers with their own desk in open office spaces in an office building 

 

Description of the datasets 

Data points Collection frequency Collection period Format 

Simulated data with 9 
different occupancy 
profiles 

continuous 
(simulated) 

1 year 
(simulated) 

CSV 

Survey 15 minutes 1 week .xls 

Walkthroughs 3-4 per day 1 week .xls 

RFID tags continuous 1 week .xls 

 

Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Not available, protected by privacy agreement with building owner 

 

Summary 

The current method of benchmarking the environmental impact of buildings is to 

normalize the building consumption with gross floor area. Buildings are first divided into 

categories that represent the building function and once this has been done they are 

compared and normalized based on building size. Typically, building size is defined by 

gross floor area. This practice is reinforced by national building regulations which aim to 

reduce energy consumption in buildings as they also present their target criteria in the 

format of energy per unit area such as kWh/m2. However, if energy efficiency is 

measured by normalizing consumption with area then we argue that this practice is 

encouraging the inefficient use of the existing building stock which leads to an increase 

in the total energy consumption of the building stock.  

In order to explain the previous point, let’s consider a building with two identical office 

zones that have the same floor area. In office zone A there are 5 desks and the 

employees typically work a 9 hour day and in office zone B there are 10 desks and the 
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employees typically work an 11 hour day. If these two identical office zones are 

benchmarked for energy or water consumption then office zone A is considered more 

efficient. This is due to the fact that fewer people consume relatively less energy and 

water. It doesn’t necessarily mean that zone A has been designed more efficiently or 

that it has more efficient control systems or management practices. The biggest driver of 

the perception of energy efficiency is that it has less people and that these people also 

work a shorter day.  

There an increasing focus on reducing energy consumption and the environmental 

impact of buildings in the real estate industry, yet this seems to be contradicted by 

building regulations that encourage buildings to have low population densities and short 

hours of operation. Buildings should be encouraged to maximise population density and 

hours of operation per day as this makes the most efficient use of the embodied 

emissions of the building stock and reduces total energy consumption as buildings 

consume energy even when they are unoccupied. 

This approach is enhanced by two societal trends which have emerged in recent years 

which are the “future of work” and the “sharing economy”. The future of work suggests 

that office employees are spending less time in the workplace and more time working at 

home or in public spaces such as coffee shops. It also suggests that working hours are 

becoming more flexible and that less and fewer people are rigidly sticking to the 

traditional working hours of 9am to 5pm. In many countries this has resulted in a 

movement away from the one desk per person model towards flexible desk policies and 

in coworking spaces. However, it must be noted that normalization by area discourages 

companies from more space efficient working methods. The trend towards sharing is 

typified by Uber and AirBnB which focus on reducing excess capacity. For example, if a 

car is only used by its owner for 20% of the hours in the year then sharing aims to use 

the car for as much of the spare 80% as is possible. If we apply this concept to 

workspaces then future offices will be closer to coworking spaces than the one desk per 

person offices of the past. However, once again these practices are inhibited by 

benchmarking that normalizes consumption by area.  

We propose an alternative to benchmarks that normalize with area which is to normalize 

consumption with area and total annual person hours [1]. Total person annual hours is 

the sum of the hours that all occupants have spent in the building during the year in 

question. A key question is how to measure building occupancy and our next phase of 

our research aims to measure occupancy using emerging technology such as: 

1. Low cost and highly accurate people counting cameras  

2. Server connections as a method of measuring occupancy  

3. Smartphone tracking by monitoring wifi, Bluetooth low energy or by iBeacons 

The forthcoming research will form part of the NewTREND (New integrated methodology 

and Tools for Retrofit design towards a next generation of ENergy efficient and 

sustainable buildings and Districts) research project which is funded by the European 

Union. This examination of total person-hours per year aims to add to the literature on: 

(a) new approaches for building data collection and (b) sub-optimal practices in the 

operations phase. 
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Key Findings 

So far  

 Benchmarking that normalize with area encourage occupancy profiles that are 

suboptimal with regard to best practices in energy efficiency and environmental 

impact reduction. 

 Benchmarks that normalize with the area and total annual person hours 

encourage occupancy profiles that are suboptimal with regard to best practices in 

energy efficiency and environmental impact reduction. 

 It is challenging to find solutions that can accurately calculate occupancy rates 

and can measure total person-hours per year. 

Anticipated 

 People counting cameras are a realistic method of people counting when high 

accuracy is required 

 Server connections is a consistent method for measuring occupancy when low 

accuracy is needed   

 Smartphone tracking is a consistent method for measuring occupancy when low 

accuracy is needed.   

 Smartphone tracking is a realistic method of people counting when high accuracy 

is required but only if all employees have enabled the relevant indoor mapping 

application on their phone. 

 

Related publications 

 Dooley, K., 2011 New Ways of Working: Linking Energy Consumption to 

People,  in: The REHVA European HVAC Journal, Volume 46, Issue 6, 

November 2011 also in 6th World Sustainable Building (SB) Conference, 

Helsinki, Finland, 18-21 October 2011  

 Huovila, A., Tyni, A. & Dooley, K., 2013 Building Occupancy as an aspect of 

Energy Efficiency, in: Proceedings of SB13 Conference in Dubai, UAE, 

December 8-10 2013.  
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Case 30 

Case study title 

Global lighting performance: Annual survey of blinds movements of 3 office buildings in 

Lausanne Switzerland. 

 

Contributors 

Bernard PAULE, Julien BOUTILLIER, Samuel PANTET, Estia SA, Lausanne, 

Switzerland 

 

Contribute to other subtasks 

N/A 

 

When and where 

 02.01.2013 – 01.31.2014 EPFL Innovation Park, CH 1015 Lausanne, 

Switzerland 

 

Building(s) description 

 Owner type: NGO 

 Building type: office buildings  

 Total floor area: Not applicable 

 Number of stories: 4 (+ground floor) 

 Location (city, country): Lausanne, Switzerland 

 One or two pictures: 

 

 

Occupant type 

 Typical office workers in single and open office spaces in an office building 

 

Description of the datasets 

Data points Collection frequency Collection period Format 

Blinds position 60 minutes 12 months webcam full HD 
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Data and models availability 

Are data and/or models available to the Annex 66 participants? If yes, where to 

download them? License agreement to use. 

 Not available, protected by ESTIA agreement. 

 

Summary 

This project focused on the effective use of movable shading devices in offices, and on 

the impact on the indoor daylighting. 

The first part of the project consisted in the observation of the actual use of sunscreens 

when the command is not automated (administrative buildings, operating webcams from 

01-02-2013 to 31-01-2014 over 125 openings, e.g., more than 500’000 individual blind 

positions analyzed). The main information is that sunscreens are very few and poorly 

used (less than two movements blinds / week) regardless of the orientation or season. 

Furthermore, the average position of the blinds leads to a significant obstruction. With an 

average of 57% of the window surface covered by the blinds, the use of electric lighting 

is almost mandatory for the back part of the room. The consequence of this misuse is 

that the contribution of natural light is far from being optimized. 

Thus the implementation of automation system to control the blinds position is of high 

interest. This study has shown that such systems can achieve performance comparable 

to those observed in the case of very “tolerant” users. In Switzerland, where the 

implementation of Venetian blinds is widespread, the issue of automation is particularly 

important and this information should be disseminated among designers and building 

owners. 

The second part of the project focused on the simulation of the actual contribution of 

daylight in each of the observed rooms (Simulations DIAL + / Radiance). This allowed us 

to compare the results with those that would have been achieved with automated blinds. 

The results of these simulations were then used to estimate the electricity consumption 

for lighting. This study shows that the energy savings associated with automated blinds 

can reach several kWh/m2 per room and per year. Comparison with SIA 380/4 (Swiss 

standard) calculations shows that the actual version of the Swiss Standard 

underestimates the potential related to blinds automation and also tends to overestimate 

the effects of artificial lighting automated control. 

The main conclusion of this study is that the implementation of automatic blinds can 

significantly increase the number of hours during which the use of artificial lighting is not 

necessary, while preserving the visual comfort and freedom of choice for users. The 

other conclusion is that the Swiss Standard should better promote the use of daylight by 

imposing specific targets on this topic.  

 

Key Findings 

 Without automation: The calculation according to the Swiss Standard is very 

pessimistic in the absence of automation. We observed that the users would not 
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switch on the lights until the light level is very low. The predicted consumption 

without automation should, therefore, be reduced by 20% to 35%. 

 Automation on lighting only: An on/off automation on artificial lighting is probably 

counter-productive because it increases considerably the number of hours ‘lights on’ 

when the blinds are not automated, as a consequence of the poor operation of the 

blinds just mentioned.  

 Automation on blinds only: the energy savings potential from automating the blinds is 

very high, even without automating the artificial lighting.  

 Automation on both lighting and blinds: the Swiss Standard calculation is pessimistic 

to very pessimistic for this scenario. The cases auto/off and continuous dimming with 

automation of the blinds shows a big gap between the calculations to the Standard 

and the simulations based on our observations.  

Related publications 

 Paule, B. Boutillier, J. & Pantet, S. (2014): Global lighting performance, Annual 

report 2013-2014. Project 81 0083: Swiss Federal Office for Energy, Lausanne, 

2014. 

 Paule, B. Boutillier, J. & Pantet, S. (2015): Shading device control: Effective 

impact on daylight contribution, Proceedings of the CISBAT’15 Conference, 

Lausanne, Sept. 2015. 

 Schneeberger, J.-L.: Automatische Storen sparen Energie (2015), Bundesamt für 

Energie,  Bern 2015. 
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Case 31 

 Case study title 

Smart Building Management vs. Intuitive Human Control  

 

Contributors 

 Zsofia Belafi, Tianzhen Hong: Lawrence Berkeley National Laboratory, Berkeley 

CA, USA 

 Andras Reith, Kornel Dome Deme: Advanced Building and Urban Design 

(ABUD). Budapest, Hungary 

 

Contribute to other subtasks 

N/A 

 

When and where 

2014 – 2015: Office Building, Budapest, Hungary 

 

Building(s) description 

 Owner type: private 

 Building type: commercial office 

 Total floor area: 70,000 sf 

 Number of stories: 8 conditioned + 3 garage 

 Location (city, country): Budapest, Hungary 

 Year of construction: 2008 

 Occupants: 450 

 Pictures: 

 

  

 

Occupant type 

 Typical office workers in open and private office spaces 
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Description of the datasets 

Data points Collection frequency Collection period Format 

Electricity, natural gas 
submetering (BMS data) 

1 month 5 years csv 

HVAC setpoints, valve 
status, room 
temperatures, weather 
data: temperature, 
radiation (BMS data) 

5 mins  16 months 
11/18/13-3/11/15 

csv 

Occupancy Y/N (BMS 
data) 

15 mins 1 year 6/10/13-
6/10/14 

csv 

Comfort and OB survey 
(212 answers out of 450 
workers) 

Once Once in March, 
2014 

Google sheet 

Thermal comfort 
measurement (code-
compliance) 

Once Once in March, 
2014 

Report 

Walk-through, interview Once Once in April, 
2014 

xls 

Thermographic camera 
check 

Once Once in 
February, 2014 

Report, pictures 

 

Data and/or models availability 

Unfortunately, data are not available to the Annex 66 participants as the owner of this 

private office building did not agree to share the data.  

 

Summary 

The owner of a large office building was facing high utility bills and low user comfort in 

his building which is located in Budapest, Hungary and was built in 2008. The office 

building was designed and built according to state-of-the-art design and energy 

management principles. Therefore, the causes of the poor operation were not quite 

clear. The objective of the project was to evaluate the energy performance and comfort 

indices of the building, to identify the causes of malfunction and to elaborate a 

comprehensive energy concept.  

In the first phase of the project, current building conditions and operation parameters 

were evaluated with special regard to building management systems, occupant control 

behavior and user comfort. The evaluation tools used include: an online survey of 450 

occupants, indoor comfort measurement, and on-site walk-through, thermographic 

camera check, and analysis of the energy consumption patterns, HVAC operation and 

indoor climatic conditions recorded by BMS system. As an outcome of the preliminary 

analyses, our investigation found that the state-of-the-art building management system 

is in good condition but it is operated by building operators and occupants who are 

practically not aware of the building management processes.  

The energy consumption of the building was simulated by the zonal building energy 

modeling software, IDA ICE. The baseline model was calibrated to the annual measured 

energy consumption of the building. The behavior and presence of the building 
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occupants were modeled based on the survey results and occupancy signals of the 

office sensors. As a result, we proposed intervention measures that would increase 

indoor thermal comfort and/or decrease energy consumption of the building. A 

parametric study was carried out to evaluate the energy and comfort yield of each 

measure proposed. In addition to this, cost estimations were prepared and simple return 

on investment (ROI) was calculated. Based on the ROI value of each measure, 

intervention packages were put together with 3, 6 and 12 years of ROI and a package 

containing all solutions. It was found that the all solutions package achieve 23% of 

annual cost savings. Soft solutions were also prepared for the owner, which included 

suggestions to provide a comprehensive training for building operators and occupants 

on building operation and adaptability [1]. 

In the final phase of the project, indoor HVAC operation conditions (setpoints), control 

schedules and principles were optimized for four different office types with different 

orientation and façade type ensuring highly energy-efficient operation and high comfort 

levels [2]. Simulation-based optimization assisted the process and helped us to 

undertake building management system fine-tuning tasks. The method applied includes 

the use of the IDA ICE model supplemented with optimization plugin using the NSGA-II 

genetic algorithm.  

 

Key Findings 

 Occupants are dissatisfied (54-64%) with the indoor comfort conditions. Comfort 

problems are permanent as the occupants installed additional equipment to 

improve their thermal comfort (17-34%). 

 Occupant dissatisfaction is higher in those offices where there is no operable 

window or intelligent room thermostat while indoor parameters are the same. 

Therefore, better user control options result in higher occupant satisfaction. 

 The fan-coil units are able to operate in heating and cooling mode on the same 

day. 

 Smart BMS system is capable of controlling and operating the building in an 

energy efficient way with high user comfort, but the onsite personnel and the 

owner's representatives are not trained to use such system effectively.  

 20% of electricity consumption is not submetered. It is not known where this 

energy is consumed. 

 Control setpoints are adjusted by onsite personnel in an intuitive way (lighting, 

shading). This results in uncontrollable setpoint changes and low energy 

efficiency. 

 Air supply duct of the fan-coil units is not installed properly, exhaust air is 

recirculated into the offices and constant sewer smell is observed throughout the 

building. 

 By means of the HVAC operation setpoint optimization user comfort can be 

increased by 31.2% and 9.5% in winter and summer conditions respectively 

while consuming the same level of energy. 



 

153 

 

 

Related publications 

 Z. Belafi, A. Reith: Smart Building Management vs. Intuitive Human Control – a 

Case Study - , Nottingham, UK, Occupant Behaviour Symposium, 2014  - 

presented in Berkeley, CA, ANNEX66 meeting, 2015 

 (http://www.nottingham.ac.uk/research/groups/environmental-physics-and-

design/ob-14-and-annex-66/index.aspx) 

  K.D. Deme, Z. Belafi, A. Gelesz, A. Reith, Genetic Optimisation of Indoor 

Environmental Parameters for Energy Use and Comfort - A Case Study for Cool-

Humid Climate, Build. Simul. Conf. (2015).  
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Case 32 

Case study title 

Improving Occupancy Presence Prediction Via Multi-Label Classification 

 

Contributors 

Fisayo Caleb Sangogboye, Kenan Imamovic, Mikkel Baun Kjærgaard, Center for Energy 

Informatics, University of Southern Denmark, Denmark 

 

Contribute to other subtasks 

Subtask A: Occupant movement and presence models in buildings 

 

When and where 

 2015, Maersk McKinney Møller Institute, University of Southern Denmark, 

Odense 

 2015, Green Tech Centre, Vejle 

 

Building(s) description 

 Owner type: University and Commercial 

 Building type: commercial office 

 Total floor area: 2500m2 and 4.000m2 

 Number of stories: 2 & 3 story buildings respectively 

 Location (city, country): Odense and Vejle, Denmark 

 One or two pictures: 
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Occupant type 

1. Typical office workers in closed office spaces in office buildings 

 

Description of the datasets 

Data points Collection frequency Collection period Format 

Occupancy presence 
data  

30 seconds 14 weeks KNX Protocol -> 
sMAP -> OccURE 
Platform -> Time 
series Data & 
Metadata  

 

Data and models availability 

Not available. 

 

Summary 

The case study utilized multi-label classification algorithms for occupancy presence 

prediction and analyzed various factors that influence prediction accuracy. The presence 

data utilized for modeling the classification algorithms were obtained from two case 

buildings (the Maersk McKinney Møller Institute Building at the University of Southern 

Denmark, Odense and the Green Tech, Vejle, Denmark). The office buildings mainly 

consist of 1, 2, 3, 4 and 6-persons offices, and the offices considered for the university 

building and the Green Tech includes 1, 2 and 4-person offices and 2, 3, 4, and 6-

person offices respectively. The occupants of these offices do not work on fixed 

schedules and all offices are equipped with motion sensors that report occupancy status 

through a KNX protocol to a building operation system in the form of sMAP. From sMAP, 

we extract the data for each office and we distinguish three kinds of occupancy 

frequency (low, moderate and high). The data used for this analysis are from periods 

August 16th to November 22nd, 2015, and this comprises 14 weeks of motion sensor 

data sampled every 30 seconds. 

Obtained occupancy data were used to formulate occupancy prediction as an MLC 

problem to determine occupancy for a single day. We partition each day into 



 

156 

 

subintervals of equal lengths and a subset of the intervals represents the predictable 

labels. In our implementation, we partition each day into 10-minute intervals to generate 

occupancy vector of 144 elements. Each label in the feature model is called a “Slot,” 

which takes a value of 1 if an area is occupied during an interval and 0 if otherwise. The 

aim is to predict unknown and future timeslots and to investigate factors that influence 

the performance of identified classifiers. To obtain a broad overview, the following 

machine learning classifiers, Support Vector Machine (SVM), Random Forest, Multi-label 

k-Nearest Neighbour (MLkNN), and Decision Tree were chosen for evaluation. All 

selected classifiers except SVM provides an adaptation for ML classification, and thus a 

baseline approach (binary relevance with one-vs-all method) for problem transformation 

and algorithm adaptation was used in this case. We compare the MLC algorithms to an 

implementation of the PreHeat [1] algorithm with k equal to five as presented in the 

original implementation. For evaluation, predictions of 3-hours and rest-of-the day 

horizons were conducted for time periods 07:00, 09:00, 11:00, 14:00 and 18:00 which 

corresponds to slots 42, 54, 66, 84 and 108 respectively. This implies that the model 

used for predicting any slot were trained with data of slots preceding them. For example, 

a model predicting from slot 42 over a specified prediction horizon will be trained with 

features DayName, DayType, Season, Holiday and Slot 1 - Slot 41. Also the inclusion 

and exclusion of holiday feature was examined for each presented scenario. 

In total, 20 scenarios were investigated for each office space and each scenario 

presents the performance (F-measure and prediction accuracy) of each model for all 

investigated scenarios. 

The evaluation results indicate that the F-measure of PreHeat and SVM on the average 

are significantly higher than that of other classifiers in most cases. However, the 

instances at which other classifiers outperform SVM and PreHeat are where the rooms 

have low occupancy frequency. We can also deduce that in all cases that the F-Measure 

of PreHeat is slightly higher than that of SVM in rooms with high occupancy frequency. 

This is because SVM uses more similar instances in the training dataset that belongs to 

the same hyperplane as the sample, while PreHeat uses only five most similar previous 

instances. Also the classifier with most counts for highest accuracy score for the 

observed cases was SVM with count 40 followed by PreHeat with 29, Random Forest 

with 28, Decision Tree with 26 and lastly, MlKNN with 16. 

Thus, we can conveniently conclude that SVM provides a more robust performance than 

other classifiers. By presenting more accurate algorithms for occupancy prediction, we 

hope to foster the development of more energy-efficient HVAC scheduling systems to 

reduce the overall energy consumption of buildings. Results from this study are 

published in [2]. 

 

Key Findings 

 PreHeat and SVM outperforms other classifiers in rooms with high occupancy 

frequency while other classifiers outperform both PreHeat and SVM in rooms 

with low occupancy frequency. 

 The reason for this observation is because PreHeat simply selects and computes 

the mean of the five closest occupancy schedules to the currently observed 
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schedule. While the selected schedules may be representative of the currently 

observed occupancy schedule for spaces with high occupancy frequency, these 

are usually not the case for spaces with low occupancy frequency.  

 In the case of SVM, SVMs create slack variables to accommodate the 

classification exceptions and given that these exceptions are minimal for high 

occupancy frequency, the resulting model is usually representative of newly 

observed occupancy schedules. However, for spaces with low occupancy 

frequency, several slack variables are created to accommodate the several 

prediction exceptions. And these exceptions are usually not representative of 

newly observed occupancy schedules. 

 A comparison between PreHeat and SVM indicates that SVM has a better 

performance than PreHeat in terms of prediction accuracy. 

 

Related publications 

 J. Scott, A. Bernheim Brush, J. Krumm, B. Meyers, M. Hazas, S. Hodges, and N. 

Villar. Preheat: controlling home heating using occupancy prediction. In Ubicomp, 

pages 281–290. ACM, 2011. 

 F. C. Sangogboye, K. Imamovic, and M. B. Kjærgaard. Improving occupancy 

presence prediction via multi-label classification. In Proceedings of the Second 

IEEE Workshop on Pervasive Energy Services (PerEnergy), 2016, IEEE. 

 


