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Preface 

The International Energy Agency 

The International Energy Agency, the global energy authority, was founded in 1974 to help its member countries co-ordinate a 

collective response to major oil supply disruptions. Its mission has evolved and rests today on three main pillars: working to 

ensure global energy security; expanding energy cooperation and dialogue around the world; and promoting an environmentally 

sustainable energy future.  

The IEA Energy in Buildings and Communities Programme 

The IEA co-ordinates international energy research and development (R&D) activities through a comprehensive portfolio of 

Technology Collaboration Programmes. The mission of the Energy in Buildings and Communities (EBC) Programme is to 

develop and facilitate the integration of technologies and processes for energy efficiency and conservation into healthy, low 

emission, and sustainable buildings and communities, through innovation and research. (Until March 2013, the IEA-EBC 

Programme was known as the Energy in Buildings and Community Systems Programme, ECBCS.) 

The R&D strategies of the IEA-EBC Programme are derived from research drivers, national programmes within IEA countries, 

and the IEA Future Buildings Forum Think Tank Workshops. These strategies aim to exploit technological opportunities to save 

energy in the buildings sector, and to remove technical obstacles to the market penetration of new energy-efficient technologies. 

The R&D strategies apply to residential, commercial, and office buildings as well as community systems, and will impact the 

building industry in five focus areas for R&D activities:  

– Integrated planning and building design 

– Building energy systems 

– Building envelope 

– Community scale methods 

– Real building energy use 

The Executive Committee 

Overall control of the IEA-EBC Programme is maintained by an Executive Committee, which not only monitors existing 

projects, but also identifies new strategic areas in which collaborative efforts may be beneficial. The ExCo has 24 member 

countries. All member countries have the right to propose new projects, and each country then decides whether or not to 

participate on a case by case basis. Most projects are carried out on a 'task shared' basis, in which participating organisations 

arrange for their own experts to take part. Certain projects are 'cost shared' in which participants contribute funding to achieve 

common objectives. As the Programme is based on an Implementing Agreement contract with the IEA, the projects are legally 

established as Annexes to the IEA-EBC Implementing Agreement.  

At the present time, the following projects have been initiated by the Programme (completed projects are identified by an 

asterisk, *): 

 

Annex 1:  Load Energy Determination of Buildings (*) 

Annex 2:  Ekistics and Advanced Community Energy Systems (*) 

Annex 3:  Energy Conservation in Residential Buildings (*) 

Annex 4:  Glasgow Commercial Building Monitoring (*) 

Annex 5:  Air Infiltration and Ventilation Centre  

Annex 6:   Energy Systems and Design of Communities (*) 

Annex 7:  Local Government Energy Planning (*) 

Annex 8:  Inhabitants Behavior with Regard to Ventilation (*) 

Annex 9:  Minimum Ventilation Rates (*) 

Annex 10:  Building HVAC System Simulation (*) 

Annex 11:  Energy Auditing (*) 

Annex 12:  Windows and Fenestration (*) 

Annex 13:  Energy Management in Hospitals (*) 

Annex 14:  Condensation and Energy (*) 

Annex 15:  Energy Efficiency in Schools (*) 

Annex 16:  BEMS 1- User Interfaces and System Integration (*) 

Annex 17:  BEMS 2- Evaluation and Emulation Techniques (*) 
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Annex 18:  Demand Controlled Ventilation Systems (*) 

Annex 19:  Low Slope Roof Systems (*) 

Annex 20:  Air Flow Patterns within Buildings (*) 

Annex 21:  Thermal Modeling (*) 

Annex 22:  Energy-Efficient Communities (*) 

Annex 23:  Multi Zone Air Flow Modeling (COMIS) (*) 

Annex 24:  Heat, Air and Moisture Transfer in Envelopes (*) 

Annex 25:  Real-time HVAC Simulation (*) 

Annex 26:  Energy-Efficient Ventilation of Large Enclosures (*) 

Annex 27:  Evaluation and Demonstration of Domestic Ventilation Systems (*) 

Annex 28:  Low-Energy Cooling Systems (*) 

Annex 29:  Daylight in Buildings (*) 

Annex 30:  Bringing Simulation to Application (*) 

Annex 31:  Energy-Related Environmental Impact of Buildings (*) 

Annex 32:  Integral Building Envelope Performance Assessment (*) 

Annex 33:  Advanced Local Energy Planning (*) 

Annex 34:  Computer-Aided Evaluation of HVAC System Performance (*) 

Annex 35:  Design of Energy-Efficient Hybrid Ventilation (HYBVENT) (*) 

Annex 36:  Retrofitting of Educational Buildings (*) 

Annex 37:  Low Exergy Systems for Heating and Cooling of Buildings (LowEx) (*) 

Annex 38:  Solar Sustainable Housing (*) 

Annex 39:  High-Performance Insulation Systems (*) 

Annex 40:  Building Commissioning to Improve Energy Performance (*) 

Annex 41: Whole Building Heat, Air and Moisture Response (MOIST-ENG) (*) 

Annex 42: The Simulation of Building-Integrated Fuel Cell and Other Cogeneration Systems (FC+COGEN-SIM) (*) 

Annex 43: Testing and Validation of Building Energy Simulation Tools (*) 

Annex 44: Integrating Environmentally Responsive Elements in Buildings (*) 

Annex 45: Energy-Efficient Electric Lighting for Buildings (*) 

Annex 46: Holistic Assessment Toolkit on Energy-Efficient Retrofit Measures for Government Buildings (EnERGo) (*) 

Annex 47: Cost-Effective Commissioning for Existing and Low-Energy Buildings (*) 

Annex 48: Heat Pumping and Reversible Air Conditioning (*) 

Annex 49: Low-Exergy Systems for High-Performance Buildings and Communities (*) 

Annex 50: Prefabricated Systems for Low-Energy Renovation of Residential Buildings (*) 

Annex 51: Energy-Efficient Communities (*) 

Annex 52: Towards Net Zero Energy Solar Buildings (*) 

Annex 53: Total Energy Use in Buildings: Analysis & Evaluation Methods (*) 

Annex 54: Integration of Micro-Generation & Related Energy Technologies in Buildings (*) 

Annex 55: Reliability of Energy-Efficient Building Retrofitting - Probability Assessment of Performance & Cost (RAP-

RETRO) (*) 

Annex 56: Cost-Effective Energy & CO2 Emissions Optimization in Building Renovation (*) 

Annex 57: Evaluation of Embodied Energy & CO2 Equivalent Emissions for Building Construction (*) 

Annex 58: Reliable Building Energy Performance Characterization Based on Full Scale Dynamic Measurements (*) 

Annex 59: High Temperature Cooling & Low Temperature Heating in Buildings (*) 

Annex 60: New Generation Computational Tools for Building & Community Energy Systems (*) 

Annex 61: Business and Technical Concepts for Deep Energy Retrofit of Public Buildings (*) 

Annex 62:  Ventilative Cooling 

Annex 63:  Implementation of Energy Strategies in Communities 

Annex 64:  LowEx Communities - Optimized Performance of Energy Supply Systems with Exergy Principles 

Annex 65:  Long-Term Performance of Super-Insulating Materials in Building Components and Systems 

Annex 66:  Definition and Simulation of Occupant Behavior in Buildings 

Annex 67:  Energy Flexible Buildings 

Annex 68: Indoor Air Quality Design and Control in Low-Energy Residential Buildings 

Annex 69: Strategy and Practice of Adaptive Thermal Comfort in Low-Energy Buildings 

Annex 70: Energy Epidemiology: Analysis of Real Building Energy Use at Scale 

Annex 71: Building Energy Performance Assessment Based on In-situ Measurements 

 

Working Group - Energy Efficiency in Educational Buildings (*) 

Working Group - Indicators of Energy Efficiency in Cold Climate Buildings (*) 

Working Group - Annex 36 Extension: The Energy Concept Adviser (*) 

Working Group - Survey on HVAC Energy Calculation Methodologies for Non-residential Buildings 
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Executive Summary 

Energy-related occupant behavior in buildings is a key issue for building design optimization, energy 

diagnosis, performance evaluation, and building energy simulation. Occupant actions such as adjusting a 

thermostat for comfort, switching lights on/off, using appliances, opening/closing windows, pulling 

window blinds up/down, and moving between spaces can have a significant impact on the real energy use 

and occupant comfort in buildings. Having a deeper understanding of occupant behavior and improving 

capability to quantify its impact on the use of building technologies and building performance with 

modeling and simulation tools are crucial to the design and operation of low-energy buildings, where 

human–building interactions are key aspects of concern. However, the influence of occupant behavior is 

under-recognized or over-simplified in the design, construction, operation, and retrofit of buildings.  

Occupant behavior is complex and requires an interdisciplinary approach to be fully understood. On the 

one hand, occupant behavior is influenced by external factors such as culture, economy, and climate, as 

well as internal factors such as individual comfort preference, physiology, and psychology. On the other 

hand, occupants’ interactions with building systems, strongly influence building operations and thus 

energy use/cost and indoor comfort; this in turn influences occupant behavior, thus forming a closed loop.  

Over 20 groups around the world are separately studying occupant behavior in this context. However, 

existing studies on occupant behavior, mainly from the perspective of sociology, lack in-depth 

quantitative analysis. Furthermore, models describing the occupant behavior developed by different 

researchers are often inconsistent, lacking consensus with regard to a common way of expressing 

experimental design, and modeling methodologies. Therefore, there is a strong need for researchers to 

work together on a consistent and standard framework of occupant behavior definition and simulation 

methodology. 

The IEA EBC Annex 66: Definition and simulation of occupant behavior in buildings is an international 

collaborative project involving more than 100 researchers from 20 countries working together from 

November 2013 to May 2018. The main objective of Annex 66 is to address the following fundamental 

research question:  

How can we develop and apply a robust and standardized quantitative description and 

computational models of energy-related occupant behavior in buildings to analyze and 

evaluate the impact of occupant behavior on building energy use and occupant comfort 

via building performance simulation? 

Annex 66 covers four key components that contribute towards answering the above question:  

1. Identify quantitative descriptions and classifications of occupant behavior; 

2. Develop methods for occupant behavior measurement, modeling, evaluation and application; 

3. Implement occupant behavior models in building performance simulation tools; and 

4. Demonstrate application of occupant behavior models in design, evaluation and operational 

optimization using case studies. 
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The major product of Annex 66 is a scientific methodological framework to guide occupant behavior 

simulation research on data collection, modeling and evaluation, modeling tools development and 

integration, application, and interdisciplinary issues. The main outcomes of Annex 66 include five 

technical reports, three occupant behavior modeling tools, and 103 journal articles.  

The key research findings are as follows: 

1. Occupant behavior has significant impacts on energy use and occupant comfort. Data, 

methods, and models were developed and applied to understand and reduce the gap between 

simulated and measured building energy performance by representing occupant behavior in a 

standardized ontology and XML schema (obXML) and developing an occupant behavior 

software module (obFMU). 

2. Data collection is fundamental for occupant behavior modeling. Methods of collecting data 

are evolving with the rapid development of sensors and Information and Communication 

Technologies (ICT). Most data collection campaigns are conducted in a typical working or living 

environment rather than a laboratory. Technology evolution requires researchers to have a good 

understanding of the available data collection methods and apply them to the most appropriate 

situation.  

3. Choice of occupant behavior simulation models depends on the building context. Studies 

suggest that stochastic models, to capture spatial, temporal, and individual diversity, do not 

necessarily always perform better than simplified deterministic models. The development of 

thermal comfort research and its combination with sociological studies can potentially shed some 

light on the modeling of occupant behavior. The evaluation of occupant behavior models should 

have explicit metrics that come from the application scenarios to quantify their performance. New 

approaches that adopt statistics for the evaluation of model accuracy are under development. 

4. Occupant behavior models are integrating with building performance simulation programs. 

obXML and obFMU modules have been integrated with building performance simulation 

programs EnergyPlus, ESP-r and DeST. However, user-friendly interfaces need to be further 

developed to enable occupant behavior simulation for practical applications.  

5. The representation of occupant behavior diversity in simulation programs is critical. 

Behavior patterns differ among individuals, and this diversity is perplexing for researchers and 

engineers tasked with identifying the behavior patterns and corresponding parameters in 

simulations involving occupants. Efforts have been made in Annex 66 to address occupant 

behavior diversity with different approaches, such as case measurements and questionnaire 

surveys.  
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6. Occupant behavior models veil the technical details and provide engineers with a friendly 

interface. A collection of case studies (a separate technical report) were compiled to showcase 

the applications of occupant behavior sensing, data collection, modeling, simulation, and analysis 

in the building life cycle. A guidebook needs to be developed that details the appropriate 

situations in which each occupant behavior model could be applied would help simulation users 

and prevent the use of models in scenarios completely different from those for which they were 

developed.  

7. Policy makers could benefit from occupant behavior modeling. This can facilitate the 

development of effective policies to reduce energy consumption in buildings. The sociological 

and psychological aspects of occupants should be studied concerning the evolution of occupant 

behavior when policy levers (regulation, information or incentive) are used by policy makers.  

8. Interdisciplinary research across the building, social, behavioral, data and computer 

sciences can help to understand, represent, model and quantity the impact of human 

behavior on building energy use, occupant comfort and health. Annex 66 established an 

interdisciplinary research framework and developed an interdisciplinary cross-country survey on 

occupant energy-related behavior in buildings, which provides valuable insights into occupant 

behavior and the basis of occupant behavior modeling and simulation. 

The beneficiaries of the results and deliverables provided in Annex 66 are building energy modelers, 

energy software developers, energy consulting companies, building designers and engineers, policy 

makers, and designers of energy saving technology. The outcomes of the Annex contribute to a deeper 

understanding and integration of the human dimension in the building lifecycle to reduce energy use and 

carbon emissions and improve occupant comfort and productivity. 
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Accuracy  Degree to which the result of a simulation conforms to the measurement value 

Actual Meteorological 

Year (AMY) 
 

Dataset consisting of twelve consecutive months of data that are not necessarily 

typical 

Advanced Message 

Queuing Protocol 

(AMQP) 

 Application layer protocol for message-oriented middleware 

Application program 

interface (API) 
 

Set of functions, code, and clearly defined methods that facilitate direct interfacing 

with computer software 

Autocorrelation  Correlation of a signal with a delayed copy of itself as a function of delay. 

Autoregressive–

moving-average model 
 

Model to provide a parsimonious description of a stationary stochastic process in 

terms of two polynomials, one for the auto-regression and the second for the 

moving average. 

Bias  
Form of systematic error whereby repeated measurements do not obtain the true 

value of the measurand 

Building Automation 

and Controls network  
 

Common, open-source, manufacturer-independent building automation system 

(BAS) communication protocol that allows hardware systems to communicate 

with each other 

Building automation 

system 
 

Hardware and software systems responsible for controlling—and often collecting 

data on—space heating, cooling, ventilation, lighting, access, and fire detection 

equipment 

Building information 

modeling (BIM) 
 

Process and system for digitally representing the functional and physical 

characteristics of a building in three or more dimensions 

Cross-validation  
Model validation technique for assessing how the results of a statistical analysis 

will generalize to an independent data set. 

Data mining  
Technique for using software to systematically explore data to seek patterns and 

other useful information 

Digital Addressable 

Lighting Interface bus 

system 

 Building automation protocol for controlling devices for lighting 

Digital Subscriber 

Line  
 

Family of technologies enabling the transmission of digital data over telephone 

lines 

Embedded database  
Database management system within an application software that requires access 

to the stored data 

Ground truth  
Data obtained by directly observing the phenomenon of interest, as opposed to 

data collected by sensors or otherwise inferred 

InnoDB  Storage engine for MySQL. See also MySQL. 

Logistic regression  Regression model where the dependent variable (DV) is categorical. 

Maximum likelihood 

estimation 
 Method of estimating the parameters of a statistical model, given observations. 

Mixed sensing  
Combination of multi-infrared, image-based, and acoustic sensors to measure 

occupant position, action, orientation, etc. 

Multiphase design  
Mixed methods research approach that involves a combination of sequential and 

concurrent elements, and often includes three or more phases 

MySQL  Open-source relational database management system 

NewSQL  
modern relational database management systems that seek to provide the same 

scalable performance of NoSQL systems for online transaction processing 

Non-intrusive load 

monitoring 
 Method to distinguish individual loads from an aggregated load dataset 
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NoSQL  
Database to provide a mechanism for storage and retrieval of data that is modeled 

in means other than the tabular relations used in relational databases 

Occupancy (occupant 

presence) 
 

Boolean value of the state of an occupant being in a space; it could also refer to the 

number of occupants in a space 

p-value  
Probability of obtaining a result equal to or more extreme than that which was 

actually observed when the null hypothesis is true 

Passive infrared 

motion sensor 
 

Sensor that detects infrared radiation from objects in its view field, often for the 

purpose of detecting occupants 

R
2
 value  

Proportion of the variance in the dependent variable that is predictable from the 

independent variable(s) 

Temporal attribute  
Time-related aspect (or extension) of a variable’s value, which can include time 

stamps and sampling interval entries 

Test bed  
Comprehensive array of sensors and other monitoring equipment that is deployed 

in a laboratory or real building environment 

Trueness  Closeness between measured data and true results 

Type 1 error  Error of concluding something is true when it is not 

Type 2 error  Error of concluding that something is not true when it is true 

Volatile organic 

compound 
 Organic chemicals that have a high vapor pressure at ordinary room temperature. 
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1. Introduction 

1.1. Background  

The international public concern over the rapid and continual increase in building energy use is 

growing. Globally, in 2010, the buildings sector accounted for more than one-fifth of total worldwide 

consumption of delivered energy, with an increasing projection rate among all sectors (USEIA 2014). 

Presently, 73% of electricity and 55% of natural gas in the United States is consumed in buildings 

(USEIA 2014), with other countries encountering similar consumption challenges. Figure 1-1 (BERC 

2016) shows large variations in the building energy consumption per capita and per floor area in 

different countries in 2012 (except for China in 2014). Many of the advanced technology users in 

developed countries consume more energy than developing countries, which lack widespread 

technology use. Having a clearer understanding of the underlying constituents that drive energy 

consumption will aid the development of effective efficiency strategies and enhance the ability to 

achieve prime economic and environmental targets (Jain et al. 2013, Pisello et al. 2014). Figure 1-2 

shows the energy consumption in buildings, broken down by end-use, for six different countries in 

different years (Yoshino et al. 2017). In the figure, the number after countries means different 

buildings in the case study. The proportions of each end-use are quite different because of the different 

operating modes of the systems and appliances. In fact, researchers have indicated that building energy 

consumption is influenced by engineering technology, cultural background, occupant behavior, social 

equity and so on, with each component contributing towards the total consumption (Hitchcock 1993, 

Mahdavi et al. 2007). Evidence suggests that occupant behavior plays a defining role in influencing 

the total consumption (Mahdavi et al. 2007). 

 
Figure 1-1: Building energy consumption in equivalent carbon emissions per capita per year in 

different countries (2012) 
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Figure 1-2: Building energy consumption by end use in six countries from IEA EBC Annex 53 

The primary drivers behind energy-related occupant behavior include the occupants’ desire to achieve 

comfort or satisfaction within their environment (Peng et al., 2012, Hu et al., 2017). For example, an 

occupant may adjust the thermostat, open the window, or turn on the lights to enhance their comfort. 

As a result, occupant behavior greatly influences the operating mode of the equipment and, in turn, the 

energy consumption. Previous research has demonstrated that similar spaces, with identical enclosures 

and equipment stock, can have vastly different energy consumption profiles. For example, data from 

split-type air-conditioners in 25 nearly identical households located in a middle-income apartment 

building in Beijing, China, showed that the measured AC electricity consumption ranged from ~0–14 

kWh/m
2
, with an average of 2.3 kWh/m

2
 (Li et al. 2014). The large variance in energy consumption 

was primarily due to the operating mode; occupants who elected to run their air-conditioners for 

longer durations, at lower setpoints, and/or throughout a larger space consumed more energy than 

occupants who behaved oppositely (Socolow 1978, Li et al. 2014). Consequently, energy reduction 

methods must encompass a combination of technological development, building physics, and occupant 

behavior to achieve the desired performance (Pisello et al. 2014).  

Technical solutions need to be customized to occupant behaviors, and it is notable that these solutions 

may affect or change occupant behavior. Ultimately, a degree of harmony between equipment 

function, occupant health/comfort, and energy performance needs to be realized. Results from a 

previous simulation study that investigated the integration of different occupant lifestyles with 

different levels of technological upgrades suggested a 36% reduction in energy consumption could be 

achieved by a technology upgrade and a reduction of roughly 80% could be brought about by lifestyle 

changes (BERC 2013). Similarly, the impact of occupant behavior on equipment operation and energy 

performance was evaluated by comparing a controllable Variable Refrigerant Volume (VRV) with a 

non-controllable Fan Coil Unit + Dedicated Outdoor Air (FCU+OA) system. The results suggest the 

FCU+OA system, which has a higher standard rated coefficient of performance than the VRV system, 
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consumes considerably more energy (Zhou et al. 2013). The flexibility of the VRV system provides 

users with more authority to control and adjust the room conditions, allowing for more efficient usage.  

Disproportionate attention has been directed towards system or technological efficiency 

improvements, while ignoring the human dimension. As a result, the cognition of influences on 

occupant behavior is insufficient both in building systems design and in energy retrofitting. This 

limited understanding of occupant behavior results in inappropriate, overly simplified assumptions that 

lead to inaccurate expectations of building energy performance and large discrepancies in building 

design optimization, energy diagnosis, and building energy simulations. Figure 1-3 shows how 

occupant behavior influences building operation, which will inherently affect energy use and cost. 

This process triggers a short-term effect on occupant behavior through psychological, physiological, 

and economic factors as well as some long-term factors such as comfort, culture, and the economic 

situation. Therefore, occupant behavior and building performance are highly coupled, with multiple 

feedback loops, making consistency challenging. Moreover, observations of occupant behavior often 

lack common principles from the viewpoints of sociology and psychology, and suffer from drawbacks 

related to privacy limitations and other non-technical issues.  

 
Figure 1-3: Schematic describing the relationship between occupants and buildings 

The aim of Annex 66 was to address these challenges by focusing on accurately capturing and 

quantifying the impacts that occupant behavior has on building energy performance. (Yan et al., 2017) 

The broader aim was to identify and eliminate current inconsistencies in building energy simulation. 

Notably, the physiology, psychology, and general principles, ranging from ideology to behavioral 

aspects, was not the primary focus. The effect of these factors contributed to the divergence among 

occupant behavior models. Additionally, one of the priorities of Annex 66 was to foster international 

collaboration in establishing a robust, universal, research framework. The following four key areas 

have been addressed: (1) experimental design and data collection, (2) model development and 

evaluation, (3) modeling tools and integration with building performance simulation (BPS) programs, 

and (4) knowledge exchange and sharing. Inherently, the development and validation of a universally 

consistent and common research language can help provide consistency across research fields. Annex 



  

4 

 

66 tackled the above challenges by supposing that the framework could be universally adopted, that 

models were integrated into a coherent whole, and efforts were channeled where most needed. A 

robust occupant behavior research framework can foster innovation and drive broad, sustained growth 

towards the achievement of energy targets. 

1.2. Objectives  

The objective of Annex 66 was to address the following fundamental research question:  

How can we develop and apply a robust and standardized quantitative description and 

computational models of energy-related occupant behavior in buildings to analyze and 

evaluate the impact of occupant behavior on building energy use and occupant 

comfort via building performance simulation? 

In this view, the primary focus of Annex 66 was categorized into four key components that contribute 

towards answering the above research question:  

1. Identify quantitative descriptions and classifications of occupant behavior; 

2. Develop methods for occupant behavior measurement, modeling, evaluation and application; 

3. Implement occupant behavior models with building performance simulation tools; and 

4. Demonstrate application of occupant behavior models in design, evaluation and operational 

optimization using case studies. 

1.3. General technical approach and scope of work 

The scope of Annex 66 was to represent, model, simulate and quantify the impact of occupant 

behavior on building energy performance. The relationship between occupant behavior and the built 

environment depends considerably on changes in the physical environment. Therefore, the general 

technical approach uses environmental descriptors as the driving parameters. These descriptors include 

temperature, relative humidity, CO2 concentration, and illumination, and were monitored and studied 

to better understand occupants’ behavioral responses. This approach assesses how occupants respond 

to their physical environment and allows for the ideological, physiological, psychological, and 

economic aspects of occupant behavior to be treated as a secondary reference. The scope was limited 

to typical offices, apartments, and single-family homes, with the assessment of the economic factors 

excluded.  
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1.4. Time schedule 

The work described in Annex 66 lasted for four and a half years, from November 2013 to May 2018. 

An International Forum on occupant behavior research was held on August 23, 2013, in Paris to 

commence the preparation of Annex 66. The Preparation Phase started in November 2013 and lasted 

for one year, followed by the Working Phase from November 2014 to June 2017. Finally, the 

Reporting Phase ran from July 2017 to May 2018.  
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2. Framework  

2.1. Overall technical framework  

Annex 66 identified and used several key topics on occupant behavior modeling and simulation 

(Figure 2-1) to structure the research activities (Figure 2-2).  

 
Figure 2-1: Research topics of Annex 66 

Figure 2-2 summarizes the six major research activities, 12 key issues to be addressed, and six main 

outcomes from Annex 66.  

 
Figure 2-2: Main research activities, key issues to address, and main outcomes 
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2.2. Technical subtasks 

Figure 2-3 shows the five technical subtasks that were created to provide solutions addressing the 

Annex objectives. Subtasks A, B, and C focused on fundamental research to represent occupant 

behavior in buildings. Subtasks D and E focused on practical applications by developing and 

integrating occupant behavior modeling tools into current BPS programs such as EnergyPlus, DeST, 

and ESP-r. The efforts of subtasks A–E cultivate solutions to real-world problems related to occupant 

behavior in the building lifecycle, from planning to design, operation, controls, and retrofitting.  

 

Figure 2-3: Subtasks of Annex 66 

Subtask A – Occupant movement and presence models. Simulating occupant movement and presence 

is fundamental to occupant behavior research. The main objective of this subtask was to provide a 

standard definition and simulation methodology to represent an occupant’s presence and movement 

between spaces. 

Subtask B – Occupant action models in residential buildings. Occupant action behavior in residential 

buildings significantly affects building performance. This subtask aimed to provide a standard 

description for occupant action and behavior simulations, a systematic measurement approach, and a 

modeling and validation methodology for residential buildings.  

Subtask C – Occupant action models in commercial buildings. Occupant behavior modeling in 

commercial buildings faces specific challenges in which occupant behavior exhibits high spatial and 

functional diversity. This subtask aimed to provide a standard description for occupant action behavior 

simulations, a systematic measurement approach, and a modeling and validation methodology for 

commercial buildings. 

Subtask D – Development of new occupant behavior definition and modeling tools, and integration 

with current building performance simulation programs. This subtask aims to enable applications by 

researchers, practitioners, and policy makers and promote third-party software development and 
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integration. A framework for an XML schema and a software module of occupant behavior models are 

the main outcomes. 

Subtask E – Applications in building design and operations. This subtask provides case studies to 

demonstrate applications of the new occupant behavior modeling tools. The occupant behavior 

modeling tools can be used by building designers, energy saving evaluators, building operators, and 

energy policy makers. Case studies verify the applicability of the developed modeling tools by 

comparing the measured and simulated results. 

2.3. Organization of the final report 

The next chapters deal with the participation (chapter 3), main research activities and outcomes 

(chapters 4-9), conclusions (chapter 10), publicity, meetings of Annex 66 and references. Figure 2-4 

illustrates the report structure. 

 
Figure 2-4: Organization of the final report  
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3. Participation in Annex 66 

3.1. Operating agents 

The operating agents of Annex 66 are Dr. Da Yan (Tsinghua University, China) and Dr. Tianzhen 

Hong (Lawrence Berkeley National Laboratory, USA). 

3.2. Subtask leaders 

Table 3-1: Annex 66 Subtask Leaders 
Subtask Subtask Leaders 

A 
Andreas Wagner, Karlsruhe Institute of Technology, Germany;  

Bing Dong, University of Texas San Antonio, USA 

B 

Henrik Madsen, Technical University of Denmark, Denmark;  

David Shipworth, University College London, UK.  

Darren Robinson of Nottingham University, UK helped lead early phase of this subtask. 

C 
Ardeshir Mahdavi, TU Wien, Austria;  

William O'Brien, Carleton University, Canada 

D 
Tianzhen Hong, Lawrence Berkeley National Laboratory, USA;  

Andrew Cowie, University of Strathclyde, UK 

E 

Khee Poh Lam, Carnegie Mellon University, USA; NUS, Singapore; 

Clinton Andrews, Rutgers University, USA;  

Cary Chan, Swire Properties, Hong Kong 

3.3. National participation  

Seventeen nations officially participated in Annex 66: Austria, Australia, Canada, China, Denmark, 

Germany, Hungary, Italy, Korea, Netherlands, New Zealand, Norway, Poland, Singapore, Spain, UK, 

and USA (Figure 3-1). The tables in Appendix B list 123 contributors and 54 interested parties of 

Annex 66. 

 
Figure 3-1: List of participating countries 
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3.4. Communication and meetings 

There were nine in-person Experts meetings during the four and a half years period of Annex 66, 

including two regular meetings each year. Details are in Appendix B. Figure 3-2 shows the nine group 

photos from these meetings. 

 
Figure 3-2: Group photos of the nine Experts meetings 
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4. Approaches for Collecting 
Occupant Data 

An essential part of understanding and modeling occupant behavior is the collection of data. Although 

this sounds self-evident, existing studies and models used for simulation show that no wholly 

consistent approach had previously been followed to obtain comparable occupant behavior datasets. 

Therefore, one of the main objectives of Subtask A was to provide substantial information on the 

monitoring of occupant behavior and data collection. This included state-of-the-art and new emerging 

sensing and data acquisition technologies, different experimental approaches (in-situ measurements 

and surveys in real-life buildings (Feng et al., 2016), laboratory experiments)—including consistent 

protocols—and data management. This chapter summarizes the work, while more detailed information 

is available in the book ‘Exploring Occupant Behavior in Buildings,’ which was published by Springer 

in autumn 2017. 

4.1. Experimental approach 

There are various methods of collecting occupant-related data for the purpose of researching building 

occupants. Three major approaches to monitoring or studying occupants will be briefly introduced: in-

situ, laboratory, and survey questionnaire (or interview) studies (see Figure 4-1). These approaches 

have been used in studies cited or directly conducted in the context of Annex 66 work on occupant 

data collection for modeling. Furthermore, several mixed methods are addressed. 

  

 

 

Figure 4-1: Occupant measuring methods. Top-left: in-situ; top-right: laboratory; bottom: 

survey. 
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4.1.1. In-situ studies  

In-situ studies involve monitoring occupants in their natural environment and typically consider long-

duration data collection. Data are normally acquired passively through sensors that are built-in as part 

of the building automation system (BAS) or are newly installed for research purposes. The sensors 

detect dependent variables such as occupants’ presence, adaptive actions, energy use, and predictive 

variables such as indoor environmental quality (Haldi and Robinson 2010, Pigg et al. 1996, Duarte et 

al. 2013). Because in-situ studies use existing environments, they are generally preferable for 

replicating reality when obtaining data for occupant modeling (de Dear 2004).  

In-situ studies, if designed and conducted well, may reduce the Hawthorne effect (McCambridge and 

Witton 2014), the notion that knowledge of being studied affects occupants’ behavior. However, in-

situ monitoring does not necessarily provide detailed contextual insights about behavior, can be 

affected by privacy implications, and requires a considerable amount of time and effort to set up and 

collect data (O’Brien and Gunay 2014, Rea 1984, McLaughlin et al. 2011, Fogarty et al. 2006). 

Moreover, the use of existing occupied spaces limits the flexibility of experiments, while research 

visits to the space can be invasive for occupants.  

In contrast to the other occupant research methods, the sample size of in-situ methods is often limited 

to the number of willing participants in the subject buildings. Lack of flexibility in sensor placement to 

avoid interfering with occupants’ activities or prevent the measurements being disturbed by the 

occupants can reduce the accuracy of measurements and may introduce errors (Reinhart and Voss 

2003, Andersen et al. 2013). While existing built-in sensors can provide a cost-effective (but 

sometimes less accurate) method for collecting data, the addition, maintenance, and removal of 

additional sensors and related infrastructure—and the labor for doing so—can become costly for large 

sample sizes. Ethics, participant recruitment, and informed consent remain fundamental challenges for 

this approach (Gilani and O’Brien 2016).  

4.1.2. Laboratory studies 

Laboratory studies require participants to spend time and interact within a fabricated environment that 

is specifically intended for scientific studies. In recent decades, numerous laboratory environments 

have been built, mostly for studying comfort, and more recently for investigating occupant behavior. 

Many look like real indoor environments, but are heavily equipped with sensors and allow greater 

control over layout, technologies, and indoor environmental conditions. This degree of control offers a 

significant experimental advantage over in-situ studies. A wide range of indoor environmental 

scenarios can be simulated according to the experimental design. Moreover, the social impact of the 

presence of other occupants on the participants’ adaptive actions can be measured very efficiently 

(Schweiker and Wagner 2016). Additionally, laboratory studies offer greater flexibility in terms of 

recruiting participants, because subjects do not have to be occupying a specific building and can be 

selected based on pre-defined criteria.  

A disadvantage of laboratory studies is that facilities for occupant research are typically costly to build 

and operate. Likewise, the experiments themselves are significantly more expensive than in-situ 

studies, mainly due to the human resources required. Another downside is that the short-term and 
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potentially unnatural characteristics of some laboratory environments may influence occupants in 

complex ways. For instance, an occupant in a laboratory study may perceive their environment 

differently than someone under stress from work in a real office. Schweiker and Wagner (2016) 

addressed this issue by having study participants perform their regular work tasks during a one-day 

test. Similarly, sensor equipment that is visible to participants reminds them that they are being 

monitored, which may constrain their behavior. Another issue with laboratory studies is the presence 

of unknown persons in an experimental setting, which may influence participants’ perceived sense of 

control over the indoor environment (Hawighorst et al. 2016). Compared with the in situ studies, 

laboratory studies are more subject to the Hawthorne effect. 

4.1.3. Surveys  

Surveys differ considerably from the two research methods described above. Surveys rely on the self-

reporting of personal behavior (Vine 1986), either by filling out questionnaires or through interviews 

and focus groups. This method is useful in its ability to reveal the logic and rationale behind habits and 

behaviors in ways that sensor-based methods do not (Day et al. 2012). Often, post-occupancy 

evaluation (POE) studies rely on surveys to understand how well a building is functioning, including 

occupant comfort and satisfaction (Cohen et al. 1999, Wagner et al. 2012).  

Surveys are a cost-effective means of achieving a large sample size and can measure phenomena that 

would be difficult or impossible to measure with sensors (e.g., thermal comfort sensation and clothing 

level). Several recent studies (Becerik-Gerber et al. 2011, Konis 2013, Haldi and Robinson 2008) have 

relied on custom technological survey solutions for polling occupants more frequently than a 

telephone, paper, or online survey would allow. Surveys have also been used to develop models (e.g., 

Haldi and Robinson 2008).  

While there are many benefits to using surveys in occupant research, a number of established 

psychological biases, including the Hawthorne effect and social desirability bias, suggest that self-

reported behavior may not always match observed behavior (McCambridge et al. 2014). In addition, a 

lack of understanding of different building services systems or the misinterpretation of questions will 

cause occupants to unknowingly report things incorrectly. A final disadvantage of survey studies is 

that, relative to in-situ and laboratory monitoring approaches, they typically do not facilitate frequent 

sampling because they rely on occupants’ active input and, therefore, may be less suitable for 

longitudinal studies. Despite these limitations, surveys are an effective tool for improving our 

understanding of occupant behavior, and can be used to narrow down predictors for in-situ and 

laboratory studies. 

4.1.4. Mixed methods 

Often, it may be appropriate or necessary to exploit the benefits of several methods to achieve the 

research goals. Mixed methods studies can be designed in a number of ways, all with the common 

feature of combining multiple methods (qualitative, quantitative, or both) in a single study. If 

qualitative and quantitative methods are combined, a greater weight may be placed on one or the other. 
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Alternatively, both parts might have equal weight in the final results. Mixed methods are commonly 

classified as being convergent parallel, exploratory sequential, explanatory sequential, or embedded 

(Creswell and Clark 2007).  

In this context, the term “mixed methods” only refers to the type of data being collected for analysis. 

These can be either quantitative (e.g., measured physical quantities) or qualitative (e.g., answers from 

interviews). However, a mixed method could also be used as an approach straddling between the 

laboratory and in-situ approaches. The Norwegian Living Lab facility at the NTNU in Trondheim and 

the Metabolic Research Unit at the University of Maastricht enable “extended laboratory studies” in 

which occupants inhabit the laboratory for a longer period (several days to weeks), and thus will 

overcome the short-term effects of laboratory experiments. However, participants are still monitored 

as in a laboratory situation, and are thus exposed to these effects.  

Convergent parallel research designs, which conduct qualitative and quantitative analysis in parallel 

followed by a comparison for final interpretation, allow researchers to quantify occupant actions and 

obtain a better understanding of cause and effect while measuring behavior in-situ. Gunay et al. (2014) 

measured the temperature in 40 apartments for four months over the heating season to understand 

occupants’ thermostat-related behavior. The researchers also performed an extensive survey during 

this time to better understand the occupants’ attitudes and behavior towards heating control. Building 

upon this work, Bennet and O’Brien (2016) combined six months of apartment temperature and 

relative humidity measurements with a survey at both the beginning and end of the measurement 

period. This allowed participants to be surveyed with the same comfort-related questions in both the 

summer and winter, while enabling logistical efficiency because the equipment was set up during the 

first survey and retrieved during the second survey.  

Explanatory sequential mixed method designs are appropriate for situations where the quantitative 

data that are collected cannot be fully explained by the data alone and qualitative methods may offer 

more insight. Meerbeek et al. (2014) monitored office workers’ window blind usage, and then asked 

selected participants to keep a diary to help explain the rationale behind their blind movement actions. 

Similarly, Day and Gunderson (2015) applied an explanatory design to study the relationship between 

occupant knowledge of passive building systems and behavior, comfort, and satisfaction. In their 

study, a survey was first conducted across ten high-performance buildings (n=118), and then follow-

up interviews were conducted with several of the survey participants (n=41) to better understand the 

results of the survey.  

Exploratory sequential designs are particularly well suited to the research of building occupants 

because qualitative methods (e.g., focus groups) can be used to identify the most important 

phenomena to measure in follow-up quantitative laboratory or in-situ studies. Given the cost of 

conducting laboratory and in-situ studies, identifying the most important measurement equipment is 

critical. An exploratory sequential design is not as common as the methods described above in the 

occupant behavior literature; however, as observed by O’Brien et al. (2013), there has been a trend 

over the past decades away from qualitative and exploratory research and toward quantitative research. 

Undoubtedly, the quantitative research has benefitted tremendously from the foundational work 

conducted in the last three decades of the 20
th
 century.  
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Finally, an example of embedded research design is that of Gilani and O’Brien (2017), where the 

primary researcher took the opportunity to converse with occupants to better understand comfort in 25 

private offices as she configured and placed the sensors. The primary goal of the study was to quantify 

how behavior affected building energy, but these informal and not explicitly planned discussions 

yielded interesting and unexpected insights (e.g., a few occupants attributed their headaches to fritted 

glass). 

4.1.5. Ethical considerations 

“While researchers conduct important research and enjoy freedom of inquiry and expression, they 

must also hold their work to high ethical standards, including protecting the rights and benefits of 

participants” (Canadian Institutes of Health Research et al. 2014). Primarily, these efforts need to 

consider the protection of an individual’s privacy and physical and mental safety. Moreover, 

participants’ time and effort should not be wasted by a poorly designed study. Therefore, part of a 

researcher’s ethical conduct is to ensure the scientific validity of the study design. Ethical conduct 

should not be considered as a burden to a researcher, but rather as an important consideration to 

minimize potential harm to participants, especially when considering the potentially high level of 

personal interaction that accompanies occupant behavioral studies or experiments.  

Ethical considerations are similar although the management process is country specific. Typically, an 

institutional review board reviews and oversees all research activities involving human participants 

(including human biological samples, e.g., blood or tissue). Ethics committees are in place to (a) 

ensure the rights, safety, and welfare of human research participants and (b) enforce compliance with 

all applicable federal and state laws/regulations. The level of review strongly depends on the type of 

study and the research design; full board review is not common in occupant studies because many of 

them use non-intrusive behavioral observations with no personally identifying information. Still, some 

studies in occupant research may involve above-minimal risk and thus require full board review. 

Likewise, any research involving vulnerable participant groups (e.g., children, prisoners, 

institutionalized individuals) is subject to full board review. 

In the case of research studies, “risk” can be defined as “the probability of harm or injury (physical, 

psychological, social, or economic) occurring as a result of participation in a study. Both the 

probability and magnitude of possible harm may vary from minimal to significant” (Penslar 1993). 

Researchers should reflect on the probability and magnitude of each potential risk identified when 

designing a study. With regard to occupant behavior, research risks mainly refer to the identification of 

specific participants and the leaking of their personal information, e.g., through different means of data 

collection and storage. Consequently, participants’ privacy and confidentiality must be maintained and 

guaranteed with regard to any personal data.  

The selection of participants should consider equity and fairness. This includes equitable selection 

regarding gender, race, ethnicity, etc., without personal bias, unless the use of one particular group has 

significance to the purposes of the study; fair distribution of benefits among the population (e.g., 

findings would serve not only high-income people); and the provision of additional safeguards for 

vulnerable populations (Collaborative Institutional Training Institute (CITI) 2016). Further, informed 
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consent must be obtained to ensure prospective participants understand (a) the nature of the research, 

(b) that they can voluntarily decide whether to participate, and (c) that they can cease participation at 

any point. 

4.2. Sensing and data acquisition technologies 

Occupant sensing provides valuable information about actual behavior by capturing the ‘life’ of 

participants. Data acquisition methods, including visual information from cameras (static or wearable), 

are essential elements of occupant behavior research. To capture occupants’ behavior in buildings, 

researchers may collect two types of information: (1) reported information using surveys and/or (2) 

monitored information from sensing and data acquisition technologies. While reported information 

may reveal insights on the rationales and motivations for behavior, they rely on recalled memories, 

which might not match the type, duration, and frequency of the actual behavior. Various types of 

sensors have been used to collect rich information about occupants and their interactions with the built 

environment, such as their presence, actions, power consumption, etc. This quantitative data 

establishes a foundation for studying the physiological, psychological, and social aspects of occupant 

behavior.  

A comprehensive survey of the literature on methodologies of occupant sensing and data collection for 

both in-situ and laboratory studies was conducted within Annex 66. This survey introduces state-of-

the-art occupant sensing technologies with regard to sensor hardware, sensing principles, and testbed 

case studies (Wagner et al. 2017). Based on this survey, the seven most relevant categories of occupant 

sensing technologies are threshold and mechanical, image-based, motion sensing, radio-based 

environmental, mixed sensing, human-in-the-loop, and consumption sensing. These are summarized in 

the following subsections.  

4.2.1. State-of-the-art of occupant sensing technologies 

Threshold and Mechanical Sensing 

Threshold and mechanical sensors detect or change the acquired state of building components with 

which occupants frequently interact, such as windows (Caucheteux et al. 2013) or doors (Agarwal et 

al. 2010). Examples in this category include: (i) reed contacts, which detect whether a door or window 

has been opened or closed; (ii) door badges, which an occupant must swipe to access a room; (iii) 

piezoelectric mats, which produce an electric signal when an occupant stands or walks on them; and 

(iv) infrared (IR) beams, which produce a signal when the beam is blocked at the entrance. 

Researchers should be aware that these sensors have a number of limitations in terms of obtaining 

accurate counts, such as lower count because of the precision limitation of equipment. 

Image-based Sensing 

Recent research applying image-based sensing tools shows that there is a gap between what people 

report doing and what they actually do (Gauthier and Shipworth 2015). Therefore, image-based 

sensing should be used to collect objective and quantitative occupant data. Challenges associated with 
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this data collection method include the analysis of visual information and ethical considerations. 

However, image recognition techniques are becoming more advanced and accessible, enabling images 

to be analyzed within the sensing technologies; this gives the researcher an output stream of behavior 

occurrence rather than pictures (Bourikas et al. 2016).  

Currently, the primary focus of image-based occupant detection technologies is to track people as they 

move through spaces, commonly known as “presence” (Kamthe et al. 2009, Erickson et al. 2014, Gade 

et al. 2012, Gade et al. 2013, Kumar et al. 2014). If errors can be excluded (e.g., non-covered areas in 

a space), image-based sensing can provide ground truth information for studies using other sensors 

(Hutchins et al. 2007, Erickson et al. 2009, Meyn et al. 2009, Lam et al. 2009, Dong and Lam 2011, 

Dong et al. 2015, Li and Dong 2017) and to track occupants, e.g., to study occupant interactions with 

windows (Inkarojirit 2005, Konis 2012), window blinds, and shades (Reinhart 2001, Kapsis et al. 

2013), or occupant evacuation (Proulx and Reid 2006).  

The most advanced versions of image-based technology use detection algorithms running within the 

packaged visible light camera hardware to detect the direction and number of people traveling through 

a space (Wang and Fesenmaier 2013). Simpler approaches use visible light cameras to detect motion 

to indicate occupant presence (Ding et al. 2011). Figure 4-2 shows a few examples of image-based 

camera deployments, where (a) is a micro camera operated through a Raspberry Pi at the University of 

Calabria (luminance camera); (b) is a commercially available camera network (visible light camera) at 

the University of Texas at San Antonio (UTSA); and (c) is a stereo vision camera network (visible 

light camera) at South Denmark University.  

Beyond the use of static cameras, visual information may be captured using wearable cameras, leading 

to the production of a visual diary or ‘lifelog.’ A wearable camera may be triggered manually by the 

participant, by a timer, or by a change in the environment (e.g., lighting level, participant movement). 

This data collection method is most effective when a specific behavior is investigated (e.g., responses 

to cold discomfort) and limits the number of images that can be processed (Gauthier 2016). As with all 

wearable tools, participants should actively engage with the device, since it needs to be worn and 

regularly recharged.  

The main limitation of image-based sensing is that participants may behave differently because they 

know they are being observed. To address this issue, researchers may introduce pre- and post- image-

based sensing studies to capture potential changes in behavior. In summary, image-based sensing is a 

powerful tool in revealing and validating occupant behavior captured by concurrent data collection 

methods (e.g., smart energy meters). 
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Figure 4-2: Examples of various camera networks deployed for occupancy behavior studies 

Motion Sensing 

Motion sensors detect the presence or absence of occupants through the occupants’ movements. The 

primary sensor types are passive infrared (PIR), ultrasonic Doppler, microwave Doppler, and 

ultrasonic ranging sensors (Agarwal et al. 2010, Agarwal et al. 2011, Hnat et al. 2012, Yavari et al. 

2013). PIR is by far the most commonly used sensor technology in this category. This sensor type has 

been extensively used as part of a network; for lighting control; to inform, validate, and verify 

occupant presence models; and as part of a testbed for network topologies (Agarwal et al. 2010, 

Agarwal et al. 2011, Dong and Lam 2011, Yavari et al. 2013, Dong et al. 2015).  

PIR sensors are a medium-cost technology, but they are accurate only if mounted with good coverage 

of the areas of occupancy. These sensors often under-count because they require a line of sight to the 

target and become inactive when occupancy activity is low. For example, they may not provide 

accurate reports in residential environments if occupants are staying still, e.g., sleep, read, or watch 

television. Currently, advanced work with PIR sensors is looking at tracking individuals as they move 

through a space (Narayana et al. 2015); the combination of different motion sensors can also offer 

improved performance.  

Radio Signal Sensing 

Occupant detection systems based on the measurement of radio signals can provide occupancy 

information such as user location, presence, count, identity, and movement (Martani et al. 2012). 

Radio signals cover the range of electromagnetic wave frequencies, from 10 kHz to 300 GHz (Misra 

and Enge 2011), and are sent from a transmitting node to a receiving node. The transmitted radio 

signal consists of a short series of pulses or a modulated radio signal.  

Radio-signal sensing can provide three types of measurements: 

 Proximity: Signal reception at the receiving node denotes the proximity of the transmitting node; 

 Distance: Signal properties or modulated content enable estimation of the physical distance from 

the transmitting node to the receiving node; and 

a) Micro camera through 

RaspberryPi at University 

of Calabria (Italy) 

(Picture by Dafni Mora) 

b) Commercially available 

camera network at UTSA 

(Picture by Bing Dong) 

c) Stereo vision camera network at 

South Denmark University 

(Picture by Mikkel Baun Kjærgaard) 
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 Distortion: Signal distortion properties at the receiving node denote that the presence of occupants 

has affected the signal properties. 

It is important to consider that radio signals transmitted through the air are affected by humidity, the 

presence of other signals, and many other environmental factors that can have a significant impact on 

the accuracy of the sensing results. An example is provided about occupancy sensing using building-

wide WiFi infrastructures (Prentow et al. 2015). 

Mixed Sensing 

Occupants interact with their indoor environment in various ways, emitting heat and “pollutants” (e.g., 

CO2 and odor) and generating sound, opening and closing windows, and turning lights on and off. 

These interactions and their effect on the indoor environment cannot normally be measured using a 

single sensing technology; often, a mixed sensing approach is adopted, whereby various types of 

sensors are used together (sensor fusion). There have been studies combining multi-infrared, image-

based, and acoustic sensors to allow the monitoring of picture depth (Seer et al. 2014). For example, 

Microsoft’s Kinect® device projects a cloud of dots that gather information about the background by 

analyzing the projected diameters of the dots and then approximating the distance from the 

measurement device using an IR vision camera. When paired with image-based sensors, this device 

can precisely determine occupancy in an observed area.  

Figure 4-3 shows an example of the deployment of Kinect sensors for a residential testbed. Another 

example is an information technology-enabled sustainability testbed (ITEST) developed by Dong and 

Lam (2011). This includes occupant sensing, data acquisition, data storage and management, and data 

processing. ITEST uses PIR and an array of sensors, including total volatile organic compound 

(TVOC) concentration, cameras, CO2, temperature, illuminance, relative humidity, and acoustic. 

These are used together to detect and predict occupant presence and numbers in an office building 

(Dong and Lam 2011).  

 
 

Figure 4-3: Microsoft Kinect
®
 with sample raw data (Microsoft 2016) (picture by Jakub 

Dziedzic) 

Human-in-the-loop 

The human-in-the-loop method requires humans to be involved in the measurement and collection of 

occupancy and/or behavior data. Methods in this category include manual observations, Internet-based 

occupant data, and device interactions.  

Manual observations cover the logging of data by a person directly sensing the information being 

relayed, i.e., counting the people walking through a hallway in person or watching a video recorded in 

a building and annotating the video with occupancy information. Manual observations are often used 
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as the ground truth when evaluating the accuracy of other occupancy sensors. This method is costly 

because of the labor required, but can achieve high accuracy if it is possible to precisely define the task 

to ensure consistency in interpretation and recording. While this method does not provide continuous 

quantitative data as the other methods, it is the only way to directly determine occupants’ clothing 

level, assess individual behavior, and capture contextual factors other than physical quantities.  

Internet-based occupant data cover various types of data provided by occupants and collected by 

applications such as social networks, calendars, or surveys. Although there are some privacy concerns 

associated with this approach (e.g., collecting and storing sensitive information), many organizations 

already gather such data, which brings down the cost. Methods combining social networking and 

calendar data have been proposed for the estimation of cubicle occupancy (Ghai et al. 2012).  

Device interactions cover data about occupant actions registered through their interactions with control 

interfaces. Common interfaces include thermostats, light switches, and controls for motorized blinds. 

Wall thermostats and other modern control interfaces often contain programmable buttons to execute 

occupants’ control decisions, such as increasing/decreasing temperature set-points, turning on/off 

lighting, and adjusting the position of motorized blinds. The statistical analyses of data concurrently 

gathered from occupants' control actions make it possible to develop occupant behavior and presence 

models. These models have been useful in building controls (Goyal et al. 2013) and design-related 

applications (e.g., O’Brien and Gunay 2015, Gilani et al. 2015).  

A more common method of using sensors for monitoring blinds is to log occupants’ control of 

motorized blinds. This has the major advantage that the infrastructure is already likely to be in place, 

and so the cost is minimal and no installation during occupancy is required. However, a major 

disadvantage of this method is that occupants use motorized window blinds much more than manual 

ones (approximately three times more according to Sutter et al. (2006)). Thus, these results cannot be 

extrapolated to develop manual blind control models. A practical issue in large control networks in 

commercial buildings is the database scan rate, which can be as slow as two scans per second. This 

can result in actions being missed—for example, an occupant may push the light switch button many 

times assuming that the controller missed the previous signals. In addition to provoking occupant 

frustration, this may also affect occupants’ activity, causing the sensor to register false actions.  

Consumption sensing 

Consumption sensing covers methods of measuring water and energy consumption in buildings. The 

accuracy of such methods depends on the level of metering granularity, which ranges from one meter 

per building to one meter per receptacle/fixture. Better metering granularity can be obtained via 

algorithmic methods (i.e., non-intrusive load monitoring methods) that split total consumption into its 

individual components. The cost of such methods is directly related to the cost of installing relevant 

metering. More recently, smart water meters have been used for detailed monitoring, but the 

deployment of smart water meters is still far behind that of electricity meters.  
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4.2.2. Occupant data acquisition and storage 

As covered in the preceding sections, a wide range of sensing technologies is available for collecting 

occupant data. With regard to data acquisition, sensors might be deployed in the area of interest for a 

particular study, or be part of the existing building automation and control network. Commonly, there 

are four different technical configurations for occupant data acquisition: manual collection, wireless 

network, gateway/building automation systems, and internet-enabled.  

Data acquisition cannot be discussed without consideration of data storage. Occupant data can be 

stored using different data storage platforms, e.g., with manual collection, data are collected locally on 

a temporary storage medium such as flash storage. Collection from the sensors to the temporary 

storage medium can be implemented with a sensor node consisting of a smartphone or a small 

computer board. The sensors can then be connected to the sensor node by either local input/output 

(I/O) or local networking. Another option is for occupant data from a BAS to be permanently stored in 

a commercial data archiver. The same data could also be stored in other ways, e.g., as individual files 

or in a database. Another example is internet-enabled sensors that allow for direct communication with 

a data repository. The data repository might be hosted on a server or cloud platform, and the sensors 

might push the data to the repository or the repository might pull data from the sensors. The internet-

enabling of sensors is part of a trend targeting the development of Internet of Things (IoT) products 

and services.  

Notably, even though sensors are internet-enabled, they might not be accessible through the public 

Internet for security reasons, but instead reside on a local subnet. This creates some limitations on the 

physical placement of the data repository, which might result in the need for a gateway that can access 

the local subnet and forward data over the public Internet. However, data safety issues have high 

priority for all cases involving an Internet connection, especially if occupancy can be detected in real 

time. 

When storing data, a number of parameters that affect the quality of the collected data must be 

considered. These parameters are as follows:  

 Latency: the time between measurement sampling and availability on the data storage platform for 

further processing;  

 Granularity: the frequency with which occupant data are collected on the storage platform;  

 Robustness: the probability that occupant data will be delivered to the storage platform; and  

 Security: the probability that occupant data could be manipulated or intercepted by a third party.  

Moreover, it is important to check that the data acquisition configuration does not have a single point 

of failure, which compromises the acquisition of data when failing. 

4.3. Data collection protocol 

A research protocol or study design describes the methods used for data collection and data analysis. 

This section focuses on data collection and describes a systematic approach for occupant monitoring 

studies. The four major phases of occupant monitoring studies are: (1) investigation and design of 

experiment; (2) participant recruitment and equipment installation; (3) study; and (4) publishing. The 
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data collection procedures listed below are somewhat targeted at in-situ studies with longer-term data 

collection. Thus, some of the steps for laboratory studies may be skipped, as it is assumed that the 

facilities are already constructed. Note that the exact order of steps will vary greatly from study to 

study as some may adopt deductive reasoning while others use inductive reasoning.  

Studies may start with observations of occupants’ behavior in a specific setting (e.g., home in winter) 

from which patterns will be inferred by applying data mining techniques to initiate theories. In 

contrast, a deductive protocol will start with a hypothesis, which will be tested to confirm a theory. For 

example, researchers investigating the effect of indoor dry bulb temperature on window opening 

behavior may introduce a ‘pre- and post-’ protocol with seasonal monitoring. The order of steps in the 

protocol described below could vary for ethical reasons. For instance, researchers cannot enter 

occupants’ private spaces (e.g., private offices or homes) prior to obtaining their informed consent. 

Thus, an iterative approach involving several visits may be required to assess the space, install sensors, 

and interview the occupants.  

4.3.1. Investigation and design of experiment phase 

First, the structure of the research should be planned by establishing the research questions and 

hypothesis, associated units of analysis (e.g., individuals, groups, geographical units, social 

interactions) and the types of relationships to be investigated. This preparatory planning phase 

involves designing the research project, selecting and investigating the space, assessing the steps 

required to prepare the spaces, obtaining research ethics approval, and budgeting. Additionally, in 

some cases, this may be necessary as part of a project proposal to acquire funding. The procedure steps 

are as follows: 

Step 1. Selection. Determine the occupant behaviors to be studied (e.g., window opening, light use, 

clothing level adjustment), including presence. 

Step 2. Method. Determine whether one or more methods (e.g., in-situ, laboratory, and surveys) will 

be used to obtain greater insights into the phenomena of interest. Understanding the range of 

research methods required to answer a research question is critical in defining the boundaries 

of the research and ensuring internal validity. In deductive studies, the observed change in 

occupants’ behavior should ideally be attributed to intervention and not to alternative causes. 

For example, window opening behavior may be attributed to an increase in indoor dry bulb 

temperature, but also to a decrease in external noise. 

Step 3. Sample size. Determine the adequate sample size (number of occupants and study duration) 

for the behavior(s) of interest. Sampling is the process of selecting the unit of analysis, and 

thereby drawing the confines of the study’s external validity. This is a critical step in the data 

collection protocol, as it outlines how the findings of the study may apply to other settings, 

places, times, and people. A major consideration for the extent of a monitoring campaign is 

budget—particularly for in-situ and laboratory studies, which tend to involve considerable 

sensor-related hardware or payment to subjects. Note that there can be significant variation 

between the cost of sensing equipment depending on accuracy, battery life, memory 

capacity, etc. To some extent, economies of scale can be realized because of the fixed cost 

and time for activities like ethics review, travel to the subject building(s), and data analysis 
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(if automated). Survey studies may be constrained if an honorarium is paid to participants. 

The research design is likely to be an iterative process, and new insights (e.g., importance of 

measuring an additional item) mean that the budget may evolve over time. 

Step 4. Factors. Once the target behavior(s) have been defined, the alternative causes and 

influencing factors (e.g., indoor environmental parameters) that are known to affect or not 

affect the behaviors of interest should be established. If there is no precedent in the literature 

regarding whether a particular factor has a statistically significant contribution to predicting 

occupant actions, the researcher is advised to consider including it in the study design.  

Step 5. Ethics. Obtain research ethics clearance, if necessary. Any study involving human 

participants requires consultation with the relevant ethics board. Note that permission from 

occupants is likely to be mandated by the local ethics board for visits to and photography of 

private spaces. 

Step 6. Inspection. If possible, particularly for in-situ studies, inspect the building(s) and spaces to 

be monitored via a walkthrough, drawings, and/or building facility management to develop 

an inventory of: (i) the current space layout and equipment; (ii) potential built-in sensors 

(e.g., those connected to the building automation system); (iii) control interfaces; (iv) 

heating, cooling, and ventilation equipment; (v) failed or broken equipment; and (vi) 

occupant interventions to equipment and user interfaces. Record this information and sketch 

the spaces. For studies involving homes and other private spaces, this step is likely to occur 

after recruitment, as participants in these spaces would normally need to provide their 

consent to researchers performing this investigation. The above information is also highly 

valuable for survey studies, if available, to provide contextual information. Similarly, it 

should be documented and published for laboratories (as explained in the Publishing phase). 

Step 7. Weather. The research design for in-situ and laboratory studies that are exposed to outdoor 

conditions should review the need to collect weather data (e.g., type of data, temporal 

resolution, spatial resolution). Many in-situ studies and modeling efforts aim to correlate 

occupant actions with weather events and trends; if this is the intention, weather data should 

be surveyed concurrently with the behavior being monitored.  

Step 8. Sample frequency. Determine the sampling frequency of measurements and data logging in 

inductive and deductive studies. Ideally, the frequency of all systems should match and the 

sampling should be synchronized. Previous studies have used sampling periods ranging from 

minutes to hours (and up to days or weeks for longitudinal survey studies). Electrical load 

measurements may require a higher frequency if they fluctuate rapidly and the objective is to 

disaggregate the load. The sampling frequency should be at least as frequent as commonly 

used in building simulation time steps (i.e., 5–15 min). Researchers should be aware of the 

expected frequency of occupant actions and the rate of change of states, and determine a 

practical sampling frequency accordingly. For the modeling of occupant actions, it is 

important to measure the time of actions so that their triggers can be reliably identified. If 

local data storage capacity is limited, the sampling frequency may be compromised to reduce 

the number of data retrieval visits for in-situ studies, as these may disturb occupants or 

invoke the Hawthorne effect. Event-based logging is more appropriate than time interval 

sampling for discrete events, like window openings and occupancy. Event-based logging is 

also much more memory-efficient, as only events are recorded. While measurements may be 
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continuous, in some deductive studies, the same set of measurements is captured at specific 

points in time, enabling inferential and repeated-measure analysis. This type of sampling 

allows the pre- and post-intervention relationships to be assessed.  

Step 9. Sensors. Determine the most suitable sensors and data-logging infrastructure for the 

measured parameters of interest. Note that for in-situ studies, some of these may already 

exist in the space as part of the BAS. Other proxies for occupancy and occupant actions may 

be available using existing infrastructure and data sources (e.g., security card systems, Wi-Fi 

devices). 

Step 10. Meters. For in-situ studies, assess the BAS, energy, and water meters to determine the 

availability of data that could be used to study the occupants. To address systematic 

measurement errors and internal validity issues, the accuracy of the sensors/meters should be 

assessed via calibration. Furthermore, sample data should be reviewed to ensure results are 

within the expected range and are being stored. Ideally, the data from meters should be 

validated (e.g., using portable equipment for spot checks). To validate survey questions, 

analogous methods can be used (such as statistical tests like Cronbach’s Alpha). 

Step 11. Redundancy. To address internal validity issues with in-situ and laboratory studies, 

additional sensors and data-logging infrastructure may be installed in parallel to collect the 

same variables with different methods. Such equipment can be sourced from scientific 

supply companies and building control equipment suppliers, but may also come from 

companies that manufacture or supply equipment for entirely different purposes than the one 

at hand.  

Step 12. Pilot study. For in-situ studies, a pilot study should be undertaken to test all sensors for 

several days or weeks under a wide variety of expected conditions to ensure proper 

functionality. In laboratories, regular tests are mandatory for consistent results over several 

years. Ideally, the sensors used to measure the same conditions (e.g., temperature sensors 

immersed in the same air) should be compared to a sensor with a known high accuracy. Key 

practical questions that the researcher should determine through sensor testing include: 

 How easily are the sensors dislodged if they are bumped or jostled by closing 

doors/windows? 

 How sensitive are the sensors to orientation and location? What are the most suitable 

placement or mounting strategies to be used in the occupant spaces? For instance, if a 

door is left ajar, does the contact sensor measure the state as open or closed? 

 What are the failure modes caused by occupant interference (e.g., permanent manual 

overrides such as covering sensors with tape) and what corresponding instructions must 

occupants be given? 

 For distributed sensors that transmit wireless signals, what is the possible range and 

impact of walls and floors? 

 How sensitive are indoor environmental sensors to sources of heat, moisture, and CO2? 

Step 13. Quality control. During the study, the output of the sensors should be reviewed mid-study 

or at regular intervals to ensure that the sensors are functioning properly and readings have 

not drifted significantly. Sensor drift should be assessed and reported at the end of the pilot 

study and the full study. 
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4.3.2. Occupant recruitment and equipment installation phase 

The occupant recruitment and equipment installation phase normally occurs after the research design 

and pilot study, and prior to the study phase. Researchers should be aware that this seemingly 

straightforward phase can take many weeks, largely because of the uncertainties associated with 

recruiting and interacting with participants; a backup strategy may need to be considered. The 

procedure steps are as follows: 

Step 1. Recruitment. Recruit participants according to the procedure laid out in the research ethics 

proposal and data protection review. The participant information sheet (PIS) should 

comprise a detailed explanation of the study, including, but not limited to, the following: 

 Duration of study 

 Expected timing and frequency of visits (e.g., for installation and removal of sensors), 

surveys for longitudinal studies, or periods in laboratory for laboratory studies 

 Type of installed instruments (sensors, surveys, wearable devices, etc.) and what they 

measure 

 For studies involving sensors, clear instructions on how to relocate sensors if absolutely 

necessary 

 Details on data storage, security, publication, confidentiality, and anonymity 

 Availability of data and final results if occupants wish to obtain them 

 Collection and publication of other information (e.g., planned questionnaires or 

photographs) 

 Terms for ceasing participation of study 

 Compensation for participating in the study, if applicable 

Step 2. Consent. Obtain permission and informed consent from occupants for experiments in private 

spaces, work places, and laboratories.  

Step 3. Occupant information. Obtain information on occupants by interview or survey, including 

but not limited to perceived control, environmental comfort, socio-demographic 

characteristics (e.g., profession, especially for studies involving workplaces), gender, number 

of occupants, household composition, employment status, and locations. 

Step 4. System commissioning. Repair failed building equipment and systems (e.g., broken blinds 

and operable window cranks, poor automatic light controls logic), if possible; otherwise, the 

data will be tainted by these anomalies.  

Step 5. On-site preparation. For in-situ studies, visit the occupants to discuss the study, check the 

space(s), and install sensors. For commercial buildings, it may be possible to gain access to 

spaces with the assistance of the building managers or operators without the presence of 

occupants. However, occupant/participant permission should be sought regardless, as per the 

terms of the ethics application.  

Step 6. Documentation. Photograph and take notes about the spaces and sensor locations. Sensors 

should be labeled so that there is no risk of mixing them up after retrieval. Many purpose-

built packaged sensors and data logging systems also allow digital naming via software. This 

extent of documentation is critical for retrieval at the end of the study and to help explain any 

unexpected measurements. 

Step 7. Provide instructions. For in-situ and laboratory studies, inform the occupants of sensor 

locations and any specific instructions to reduce the likelihood of obstruction, disconnection, 
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or damage. Researchers should remind participants to contact them if there is a change in 

occupancy pattern, e.g., moving office or home, so that the equipment is not lost and the data 

are not misinterpreted as having minimal occupant presence and actions. It is wise to provide 

researcher contact information on all distributed sensors. 

4.3.3. Study phase 

This phase follows the research design, pilot study, sampling and installation of equipment. It may last 

weeks to years, and focus on the collection of the main dataset. The study phase procedures are as 

follows: 

Step 1. Monitor data. Plan regular data checks, if possible, to ensure that sensors and data storage 

are functioning. If data storage is local and requires site or laboratory visits, the researcher 

should avoid frequent visits to minimize effort and avoid disrupting occupants. Note that the 

amount of lost data could be as high as the time between checks. Therefore, frequent visits 

and data loss issues should be fairly balanced. For instance, for in-situ studies, monthly visits 

will help ensure that at most only one month of data is lost. If possible, back-up sensors, 

batteries, and other equipment and tools should be brought to site visits in case a sensor 

failure has occurred. Data should be backed-up on multiple storage devices, while abiding by 

the data security regulations laid out in the ethics application.  

Step 2. Surveys. Perform scheduled intermediate surveys, if applicable. 

Step 3. Data security. Ensure secure data storage and occupant confidentiality or anonymity, 

according to the details in the research ethics application, to protect occupants’ identity and 

measured data. Coding schemes can be used to disassociate occupant names from data (i.e., 

pseudonyms). This is particularly important for occupancy data, which could be used by 

thieves or employers. Normally, ethics clearance requires thorough planning for these 

matters. 

4.3.4. Publishing phase 

Given the significant effort required to conduct occupant monitoring campaigns, the resulting data and 

analysis are of tremendous value to the research community. Thus, the importance of attention to 

detail, scientific rigor, and transparency in such studies cannot be underestimated. Therefore, the 

following actions are required: 

Step 1. Scientific detail. Provide a significant level of detail about the equipment specifications, 

spaces, participants, occupant behaviors of interest, and details of the procedures listed above. 

Best scientific practice is to ensure sufficient detail to allow readers to repeat the experiment. 

Contextual information (e.g., building orientation, difficulty to reach a building interface, loud 

street noise) should be included.  

Step 2. Data sharing. Publish anonymized data in raw or aggregated form, where possible, such that 

other researchers and stakeholders can verify the published results. The additional reporting of 

non-significant variables will help to avoid unnecessary effort and cost for future research 

(e.g., potential meta-analysis). 
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In summary, the data collection protocol aims to provide a framework to answer a research question. It 

may follow an inductive or deductive approach to uncover the cause(s) of specific behavior. While 

drawing the boundaries of the research in the selection of the data collection method(s) and the 

sample, the protocol addresses internal and external validity issues. 

4.4. Data management 

Data management is an important discipline to reliably collect and store data using the research 

methods and protocols. For instance, data support energy and performance contracting (Li et al., 

2014), model-predictive building systems control, smart load balancing, and preventive building 

maintenance. Accordingly, there are various instances of commercially implemented building 

monitoring systems, as well as research-oriented data collection campaigns (e.g., Roda and Musulin 

2014, Guerra-Santin and Tweed 2015, Böhms and Rieswijk 2015). However, further advances in this 

area are desirable, with the aim of mature technical infrastructures, resilient hardware designs, 

interoperable software solutions, and—last but not least—higher sensitivity concerning building 

occupants and their presence, actions, and experiences. This section summarizes the results of a 

number of related Annex 66 activities concerning the management of occupancy data. Section 4.4.1 

discusses a recently developed ontology for the representation and incorporation of multiple data 

streams in computational applications, such as building performance simulation tools and building 

automation systems (Mahdavi and Taheri 2016, Mahdavi et al. 2017). Section 4.4.2 addresses 

common data processing requirements and a number of typical queries that building monitoring data 

repositories need to support. Finally, section 4.4.3 briefly mentions general requirements and 

prototypical implementations of data repository solutions for the structured collection, storage, 

processing, and multi-user exchange of monitored data. 

4.4.1. An ontology for building monitoring data 

The proposed ontology (Mahdavi and Taheri 2016) includes six data categories that provide a coherent 

framework for classifying the multiplicity of empirical information collected via building monitoring 

systems. These are: (1) occupants, (2) indoor environmental conditions, (3) external environmental 

conditions, (4) control systems and devices, (5) equipment (EQ), and (6) energy flows.  

 

 

 

 

 

Table 4-1 provides a brief summary of these categories. 

A suitable ontology for the monitored information must clearly define the nature of the monitored 

variables. To this end, it is possible to demonstrate that, given each data category and the respective 



  

28 

 

sub-categories, all monitored data can be captured in terms of values, associated sources, and possible 

actors (see Table 4-2). 

 

 

 

 

 

 

Table 4-1: Categories of the proposed building monitoring ontology 
Data category Brief description 

Occupants Time series data of occupants’ presence and actions are essential for use in cases such as 

building operation, occupant-based MPC (Model Predictive Control) and performance 

assessment. Such data can be structured in terms of four sub-categories, namely i) position, 

ii) control actions, iii) attributes (e.g., clothing levels), and iv) attitudes (i.e., perceptions and 

evaluations).  

Indoor  

environmental 

conditions 

Building performance assessment processes require indoor environmental data. Theories on 

subjective evaluation processes, as well as occupants’ control-oriented behavior, involve one 

or more indoor environmental parameters as independent variables (e.g., air temperature, 

illuminance levels).  

External 

environmental 

conditions 

The objective assessment of energy and indoor climate performance requires consideration 

of the buildings’ contextual circumstances.  

Control 

systems and 

devices 

Building performance depends on the quality of the installed control systems (for heating, 

cooling, ventilation, etc.). This also applies to the values of system control parameters (e.g., 

set-point temperatures for room heating and cooling). Thus, adjustment of the control 

parameter values must also be monitored. Moreover, the state information regarding devices 

(windows, luminaires, etc.) and associated actuators are of critical importance.  

Equipment  Buildings house various technical components such as electrical equipment (e.g., computers 

and associated peripherals), appliances (e.g., clothes washers and dryers), safety and security 

equipment (e.g., smoke detectors), and transportation equipment (e.g., elevators). Associated 

data can benefit multiple applications (e.g., energy optimization, smart grids).  

Energy flows Evidence-based building design and energy performance verification require high-resolution 

energy use monitoring (energy metering). Here, resolution can be understood: (a) in spatial 

terms (e.g., micro-zones, rooms, floors, whole buildings), (b) across multiple systems (e.g., 

heating, lighting, equipment), and (c) in temporal terms (e.g., sub-hourly, hourly, daily, 

monthly, annual). If applicable, energy-harvesting systems such as solar-thermal collectors 

or photovoltaic panels also need to be monitored.  

 

Table 4-2: Specification of monitored variables 

Specification Description 

Values Observational data are typically measured (quantitative) values. Measured values of scalar 

nature, such as temperature, have a magnitude. Most measured variables in building 

monitoring have values that can be expressed in terms of real numbers, but some (e.g., 

thermal comfort evaluations) are typically characterized as nominal data, involving 

classifications and categories. Typically, a unit must be specified for the variable (e.g., 

degrees Celsius for air temperature) in order to correctly interpret the numeric values. 

Spatial and temporal attributes (or extensions) can also be assigned to variable values. 

Actors Changes in the state of control devices and equipment may be triggered by different agents 

(or actors). For instance, windows may be operated by human agents and motorized shades 

may be operated based on programmed rules in the automation systems. Ideally, the 

monitoring system should identify the agent responsible for each change of state.  

Sources Building monitoring can integrate not only common technical sensors (e.g., temperature 

sensors) and meters (e.g., power meters), but also human agents. For instance, subjective 

evaluations of indoor climate are customarily assessed via interviews or questionnaires. 

Data sources must also be specified in terms of their location. 
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4.4.2. Data processing and typical queries 

The elaboration of monitored data can involve very different data processing paths and options. The 

steps involved in the related processing routines are strongly dependent on the specific attributes and 

behavior of the data collection sequence for the sensor, signal convertor, data pre-processing, storage, 

retrieval, and post-processing. Generally, data post-processing can be separated into two main 

categories, one for periodic data and one for event-triggered or event-related data.  

Periodic data are provided by systems that store measurements at regular time intervals based on an 

internal cycle timer. Corresponding typical systems are BAS and measurement systems or data 

loggers. The intervals are usually defined by internal setup values. A cycle timer triggers the execution 

of an internal polling algorithm and the data storage routine. Such data are mainly processed by simple 

averaging or interpolation of the raw data. Data monitoring systems that are triggered by events (e.g., 

movement, opening of a door or window, activation of devices, alarms or warnings) tend to store the 

raw data with corresponding—typically irregular—timestamps. Usually, these data must be post-

processed to generate periodic synchronized data for subsequent analysis, evaluation, or export into 

other applications (e.g., simulation tools). The generation of periodic data works in terms of a sample-

and-hold process, and repeats the last value as long as no new event is recorded. If more than one 

value is measured during an interval, different post-processing options may be relevant. For instance, 

periodic instantaneous data may be generated using the last recorded value at each interval. However, 

in certain use cases (e.g., energy simulation), multiple measurements within an interval are aggregated 

(e.g., via time-weighted averaging) and assigned as the periodic interval value (e.g., Tahmasebi and 

Mahdavi 2015). 

4.4.3. Building monitoring repositories and prototypical implementations 

System Design  

There is a variety of monitoring systems with different system designs to serve different purposes. 

Modular monitoring applications are best suited to multi-purpose systems: compared to monolithic 

application designs, they offer more flexibility, maintainability, and optimized resource distribution 

(Schuss et al. 2016). Independent software modules support the realization of a scalable architecture. 

Such a concept requires a central distribution mechanism that routes requests between physical 

machines that may be distributed across buildings within a city. For instance, a Java-based 

implementation could bundle the components using Message Oriented Middleware (MOM) that can 

be accessed via a Java Message Service (JMS) Application Programming Interface (API). The 

communication process is then established by dynamically created queues (point-to-point) and topics 

(publish-subscribe). On the binary level, there are various protocols that can be used, such as the 

Advanced Message Queuing Protocol (AMQP). With this technique, it is possible to develop a system 

core with variously deployable modules residing on different physical machines using a centralized 

communication mechanism. The system core consists of at least a data access layer that implements 

the necessary web services to communicate building data via standard industry protocol 

implementations, such as OPC Unified Architecture (OPC UA), Open Building Information Exchange 

(oBIX), or custom RESTful (Representational State Transfer) APIs. Sensor data can be requested from 
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distributed sensor webs in real-time via sensor observation services (e.g., IoT networks) or from the 

application’s data stores (e.g., historic data) via a persistence layer. The system core enriches the raw 

sensor data with further semantic information from the sensor ontology and builds a sensor data result 

set that is communicated to client applications or other application services via MOM (internal) or 

web services (external).  

Data Repositories  

Creating high-performance data repositories implies the need for a thorough requirement analysis. The 

stability of the data repository not only depends on the amount of data to be stored, but also on the 

queries to be supported, necessary pre- and post-processing, number of requests, desired response time 

(real-time vs. historic data access), amount of data per request, distribution channels, caching, 

indexing and partitioning techniques, and so on. The requirements will change depending on the data 

storage concept adopted. Most monitoring applications store sensor data in files (e.g., CSV), relational 

databases (e.g., MySQL), NoSQL databases (e.g., MongoDB, Cassandra), embedded databases, in-

memory databases, or NewSQL databases.  

Prototypical Implementation – Monitoring System Toolkit 

The above monitoring system design concepts were prototypically implemented in the Monitoring 

System Toolkit (MOST) (Zach et al. 2012). This toolkit was optimized to handle multiple building 

data on an urban level (Glawischnig 2016). Thus, the discussed implementation of redundant, stateless 

core components was a vital step. The application consists of four layers that communicate internally 

via MOM. The persistence layer offers multiple repository implementations. Depending on the use 

case, either a MySQL or Cassandra repository can be used to store sensor data. The BMS business 

logic and virtual data-point implementations, which are written in the MOST domain-specific 

language, reside in the service layer. Furthermore, the ontology used to enrich the sensor data resides 

in the BMS business logic. The service adapter holds implementations of various standard industry 

protocols, such as OPC UA and oBIX, as well as a custom RESTful interface to offer access to client 

applications. Finally, the presentation layer currently consists of a web application and a mobile app. 

All modules are loosely coupled and can thus be redundantly deployed on different physical machines 

while sharing the same application context. 

4.5. Occupant data collection summary  

Sensing occupancy behavior and collecting occupant data in buildings is a non-trivial and 

comprehensive process. It involves experimental design, sensing and data acquisition, collection 

protocol and data management.  There are four types of experimental approaches: in-situ monitoring, 

laboratory studies, surveys and mixed method that combines qualitative and quantitative analysis. 

During experimental design, ethics needs to be highly considered. Ethical considerations are country 

specific. Typically, an institutional review board reviews and oversees all research activities involving 

human participants (including human biological samples, e.g., blood or tissue). This chapters also 

summarizes fourteen current state-of-the-art occupant sensing technologies into seven most relevant 

categories, including threshold and mechanical, image-based, motion sensing, radio-based 
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environmental, mixed sensing, human-in-the-loop, and consumption sensing. Each sensing technology 

has its own pro and cons. Until now, not a single technology can detect both presence and numbers in 

a cost-effective way with high accuracy. Finally, this chapter reviewed recently developed ontology 

for the representation and incorporation of multiple data streams in computational applications, data 

processing methods and data repositories.  
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5. Modeling Occupant Behavior 

This chapter contains an introduction to the techniques most frequently used for modeling occupant 

behavior. Here, the main emphasis is on methods for modeling serially independent data, but it will be 

stressed that, in the case of serially correlated (time series) data, it is important to consider methods 

that enable a description of time-correlated data. Additionally, an overview of some important model 

selection tools is given. Subsequently, some of the major modeling results in the literature and the 

progress made in Annex 66 are briefly outlined. These results are divided into sections, each 

corresponding to behaviors or actions such as presence, window opening, window shading, lighting 

use, thermostat setting, and appliance use. Finally, a section is dedicated to the modeling of diversity 

in occupants’ behavior. 

5.1. Modeling approaches 

The set of mathematical methodologies used in the field of occupant behavior modeling has grown 

significantly in recent years. Classical statistical models such as general and generalized linear models 

have been applied extensively. For time-dependent data, Markov and Hidden Markov chains (Dong 

and Lam 2016, Liisberg et al. 2016, Andersen et al. 2014, Richardson et al. 2008) have proved to be 

useful tools. Mixed-effects models have been applied to capture the diversity among occupants, and 

more recent data mining techniques such as clustering (Pan et al., 2017; Ren et al., 2015) and decision 

trees have been used (D’Oca and Hong 2015). This section gives a brief methodological overview of 

the modeling approaches used for occupant behavior models. 

5.1.1. General linear models 

The general linear model (classical GLM) is a classical statistical model that assumes normally 

distributed response variables and a linear relationship between the explanatory variables and the 

response variable. For instance, ordinary linear regression and the analysis of variance (ANOVA), and 

mixtures thereof, are classical examples of GLM. Let 𝑌 = (𝑌1, … , 𝑌𝑛) be a vector of n observations of 

a response variable. We assume that Y follows a multivariate normal distribution 𝑁(𝜇, Σ). In the 

classical GLM, it is assumed that the vector of mean values 𝜇 = (𝜇1, … , 𝜇𝑛) can be expressed as a 

linear combination of some explanatory variables expressed by column vectors 𝑋1, … , 𝑋𝑘 
such as 

𝜇 = 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑘𝑋𝑘 

for certain parameters 𝛽1, … , 𝛽𝑘. For the classical GLM, the variance is independent of the expected 

response, and any observation is typically written as  

𝑌𝑖 =  𝜇𝑖 + 𝜀𝑖
 

where {𝜀𝑖}  is a sequence of independent and identically distributed (i.i.d.) random variables with 

variance 𝜎². For time series data, this is called a white noise sequence. 

(5.2) 

(5.1) 



  

33 

 

5.1.2. Generalized Linear Models 

Generalized linear models (GLMs) are an extension of the concept of general linear models, and were 

introduced by Nelder and Wedderburn (1972). Here, we relax the assumptions of a normally 

distributed response variable and a linear relation between the explanatory variables and the mean 

value of the response variable. Instead, we allow the response variable to be a member of a broader 

class of distributions (exponential dispersion family). We assume that the mean of the response 

variable is linear in the explanatory variables only through a link function g, i.e.,  

𝑔(𝜇) = 𝑋𝛽 

For this model, the variance becomes a function of the mean. The residuals are still assumed to be 

uncorrelated. GLMs apply to a wide variety of statistical distributions. One example that occurs 

frequently in occupant behavior models is the Bernoulli distribution, which models the outcome of a 

yes/no experiment. The corresponding canonical link function is the logit function  

𝑔(𝜇) = log (
𝜇

1 − 𝜇
) 

This model is referred to as Logistic Regression. Some relevant distributions with their canonical link 

functions and typical use cases are listed in Table 5-1. 

 

Table 5-1: Logistic Regression: Relevant distributions with canonical link function and typical 

uses. 
Distribution Link name Link function Typical use Application 

Normal Identity 𝜇 = 𝑋𝛽  
Continuous response 

data 
Temperature, CO2, ... 

Poisson Log log (𝜇) = 𝑋𝛽 Count data Number of occupants 

Bernoulli Logit log (
𝜇

1 − 𝜇
) = 𝑋𝛽 Yes/no data Window open/closed 

Binomial Logit log (
𝜇

1 − 𝜇
) = 𝑋𝛽 

Share of “yes” in 

yes/no data 

Number of windows 

open 

5.1.3. Linear mixed effects models 

The concept of linear mixed effects models (LMMs) is another generalization of the classical GLM. 

Here, besides the explanatory variables X (here called fixed effects), the model also contains random 

effects U. In this case, the mean value can be expressed as 

𝜇 = 𝑋𝛽 + 𝑍𝑈 

Random effects handle unobserved heterogeneity in the data and link this to some explanatory 

variables collected in the vector Z. Random effects account for variation that is prevalent in the data, 

but whose direct relation to the outcome variable is meaningless for the model. In LMMs, random 

effects are assumed to be normally distributed. 

A typical application for this type of model would be measurements that were carried out in batches. 

Consider, for example, a comfort study carried out on three different dates A, B, and C. An 

inexplicable relation between the date and the outcome variable of the study might be found, and this 

(5.3) 

(5.4) 

(5.5) 
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should be taken into account. However, “date” is obviously not suitable as a predictor variable for the 

model, as future subjects would not belong to any of the classes A, B, or C. 

5.1.4. Hierarchical generalized linear models 

The model class of hierarchical generalized linear models (HGLMs) was formulated by Lee and 

Nelder (1996) as a natural generalization of GLMs to incorporate random effects (Madsen and 

Thyregod 2011). The model is characterized by 

𝑔(𝜇) = 𝑋𝛽 + 𝜈(𝑍𝑈)  

where ν is a monotone function and the random effects U are not necessarily normally distributed 

(otherwise, the notation is the same as above). Special cases of HGLMs are generalized linear mixed 

effects models (GLMMs), in which the distribution of U is normal and 𝜈 is the identity function 

𝑔(𝜇) = 𝑋𝛽 + 𝑍𝑈 

GLMMs can also be seen as a generalization of LMMs. As in the GLM, the mean is a linear 

combination of the predictor variables X through a link function g. Haldi et al. (2016) used a GLMM 

with a binomial response variable and corresponding logit link function. In this case, the random 

effects were used to model the behavioral diversity of occupants. 

5.1.5. Linear time series models 

The class of models described up to this point does not consider temporal dependencies between the 

observations. However, in many cases in the field of occupant behavior, response and explanatory 

variables are derived from time series data. This leads to correlations among the variables, but also to 

correlations between the “errors” (residuals) over time, a phenomenon known as autocorrelation 

(Madsen 2008). 

The class of autoregressive moving average (ARMA) models provides a description of the variation in 

time-correlated data, and covers a broad range of linear time series models. ARMA models are a 

combination of autoregressive (AR) and moving average (MA) models. For a time series {𝑋𝑡}, an 

autoregressive model AR(p) is given by  

Xt = ∑ i=1
p

 𝜙𝑖𝑋𝑡−𝑖 + 𝜀𝑡   

where 𝜙1, … , 𝜙𝑝 are model parameters and {𝜀𝑡} is a series of Gaussian white noise. Hence, the current 

observation can be represented as a linear combination of the previous p observations up to 

uncorrelated and identically distributed errors. For a moving average model MA(q), the time series 

satisfies the expression 

Xt = ∑ i=1
q

 𝜃𝑖𝜀𝑡−𝑖 + 𝜀𝑡 

where 𝜃1, … , 𝜃𝑝 are model parameters. The current value of X is given by a linear combination of time 

lags of a white noise process. 

(5.6) 

(5.7) 

(5.8) 

(5.9) 
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To determine whether a model inherits all systematic dependencies of the variables over time, we can 

check whether the residuals, i.e., the differences between the one-step prediction and measured 

outcome, are uncorrelated. In constructing both time static (i.e., regression) and dynamic (i.e., ARMA) 

models, it is very important to check the i.i.d. assumption with respect to the noise (residuals). The 

autocorrelation function (ACF) can be used to identify temporal correlations in the series of residuals, 

and is therefore an important tool for the evaluation of models that describe time series data (for 

details, see Madsen 2008). The two upper plots in Figure 5-1 show a time series together with its ACF, 

which exhibits an exponential decay in the correlation. After fitting the data to an AR(1) model, the 

residuals are close to white noise. The corresponding ACF shows no correlations, as desired. 

 

Figure 5-1: Example of a linear time series model 

In some cases, it is sensible to model a variable’s stepwise differences instead of its absolute values. 

The class of ARIMA (Autoregressive Integrated Moving Average Model) generalizes ARMA to 

include differenced data. Other extensions allow the modeling of multivariate variables (MARIMA) 

and include external predictors (ARMAX) in the model. 

Most time series data can be described fairly well by linear time series models. Ignoring any temporal 

correlation in the residuals might lead to problems. For most occupant behavior models, both 
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explanatory variables (drivers) and response variables (behavior) are expressed through time series 

data. It is therefore advisable to take temporal correlations into account. 

5.1.6. Markov chains 

Markov chains are used in a wide range of applications in occupant behavior modeling, such as in 

models of presence, window opening and blind usage, lighting, and occupant activities. The defining 

assumption of a Markov chain is that future states are dependent only on the current state together 

with the probabilities of the state changing. Time series in which the quantities take a finite number of 

states can be modeled using Markov chains. In practice, the quantities modeled using Markov chains 

in the field of occupant behavior are i) occupancy (presence, absence, number of people present); ii) 

window states over time (open, closed); iii) blind usage (open, closed, fraction of opening); and iv) 

activity level (working, sleeping, resting, laundry, cooking, absent). A Markov chain consists of a set 

of transition probability matrices that describe the transition between states in each time step. The 

matrix entries can be estimated from the source data using maximum likelihood estimation. A Markov 

chain is defined as follows. Let M be a finite set and T be an index set. A collection of M-valued 

random variables {𝑋𝑡} with 𝑡 ∈ 𝑇 is called a Markov chain if the following equation holds: 

𝑃(𝑋𝑡|𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋0) = 𝑃(𝑋𝑡|𝑋𝑡−1) 

Hence, the previous time step contains all information needed to calculate the probability of the 

current time step. This Markov property expresses the memoryless property of the process {𝑋𝑡}. The 

set M is called the state space of the Markov chain. For 𝑖, 𝑗 ∈ 𝑀, the conditional probability is given by  

𝑃(𝑋𝑡 = 𝑖 |𝑋𝑡−1 = 𝑗) = 𝑝𝑖,𝑗(𝑡) 

Equation (5.11) defines the transition probability from state j to state i (at time t). The matrix Γ(𝑡) =

{𝑝𝑖,𝑗}(𝑡) is called the transition probability matrix. If the transition probabilities do not depend on 

time, i.e., if the transition probability matrix is constant over time, Γ(𝑡) = Γ, the Markov chain is 

called homogeneous. Otherwise, it is called inhomogeneous. For a detailed description of Markov 

chains, refer to Zucchini et al. (2016). 

5.1.7. Hidden Markov chains 

A hidden Markov model (HMM) is a probabilistic model consisting of a Markov chain {𝑋𝑡} whose 

states are not directly observed and a series of observations {𝑌𝑡}. The observations follow a state-

dependent distribution, i.e., their values are influenced by the current state of the Markov chain. An 

HMM can be expressed as  

𝑃(𝑋𝑡|𝑋(𝑡−1)) = 𝑃(𝑋𝑡−1) 

𝑃(𝑌𝑡|𝑋𝑡, 𝑌(𝑡−1), 𝑋(𝑡−1)) = 𝑃(𝑌𝑡|𝑋𝑡) 

where 𝑋(𝑡−1) and 𝑌(𝑡−1) are the complete histories of {𝑋𝑡} and {𝑌𝑡}, respectively. The formulas above 

can be read as: {𝑋𝑡} depends only on its previous value, and {𝑌𝑡} depends only on the current value of 

{𝑋𝑡}. The transition probabilities and parameters of the state-dependent distribution can be estimated 

based on maximum likelihood theory. One is usually interested in deriving information about an 

(5.10) 

(5.11) 

(5.12) 

(5.13) 
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unobserved entity (i.e., X) from the series of observations (i.e., Y). The most likely sequence of hidden 

states, given the obtained series of observations, is called global decoding. This can be efficiently 

calculated by the Viterbi algorithm. For more detailed information on HMMs, refer to Zucchini et al. 

(2016).  

5.1.8. Bayesian network models 

Bayesian network models (BNs) are directed acyclic graphs (DAGs) or belief networks that are used 

to represent the relationships among a predefined group of discrete and continuous variables (Xi). BNs 

consist of a graphical model and an underlying conditional probability distribution. The nodes of the 

graph represent the variables, and the dependencies between variables are depicted as directional links 

corresponding to conditional probabilities. Hence, the construction of a BN consists of determining the 

structure and the probability distribution associated with these relations. The relationships between 

nodes can be explained by employing a family metaphor: a node is a parent of a child if there is an arc 

from the former to the latter. For instance, if there is an arc from X1 to X3, then node X1 is a parent of 

node X3. The Markov property of the BNs implies that all probabilistic dependencies are identified via 

arcs and that child nodes only depend on the parent nodes. To calculate the joint probability 

distributions, the following chain rules are used: 

Discrete case    𝑃(𝑋1, … , 𝑋𝑛) = ∏i=1
n  𝑃(𝑋𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))              (5.14) 

Continuous case   𝑓(𝑋1, … , 𝑋𝑛) = ∏i=1
n  𝑓(𝑋𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))        (5.15) 

5.2. Model selection 

Model selection is the process of finding the set of predictor variables that build the “best” model. A 

“good” model is generally considered to be one that explains the observed data well, generalizes to 

more data, and is as simple as possible (Hastie et al. 2009). In the following, some of the model 

selection techniques and entities commonly used in the field of occupant behavior modeling are briefly 

described. 

5.2.1. p-value 

A p-value is a statistical concept for hypothesis testing. It is often used as a criterion for the 

significance of predictor variables in models. A predictor 𝑋𝑖 is assumed to contribute significantly to a 

model if its corresponding coefficient 𝛽𝑖  differs significantly from zero. This corresponds to the 

rejection of the following null hypothesis: 

𝐻0: 𝛽𝑖 = 0 

The p-value is the probability of obtaining the observed data or something more extreme under the 

null hypothesis (i.e., given that the parameter in question is zero). Hence, a low p-value indicates a 

high significance of the predictor. Usually, p = 0.05 is used as a significance threshold. 

 

(5.16) 
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5.2.2. Maximum likelihood estimation 

 With maximum likelihood estimation for some observed data x, we seek the statistical model that best 

describes the data. Plainly speaking, the premise of this theory is that, out of all potential data, the 

observed data are the most likely to occur. Therefore, one chooses that statistical model for which the 

observed data 𝑥 are most likely. We assume a statistical model expressed by a probability function 

𝑃𝜃(𝑥) that is known up to one or more parameters 𝜃. The probability function as a function of 𝜃 is 

called the likelihood function 𝐿(𝜃). The parameter that maximizes the likelihood function is called the 

maximum likelihood estimate (MLE):  

𝜃 = max
𝜃

𝐿(𝜃) = max
𝜃

𝑃(𝑥|𝜃)   

For theoretical and practical reasons, the logarithm of the likelihood (log-likelihood) is usually 

maximized. 

5.2.3. Akaike’s information criterion 

Akaike’s information criterion (AIC) is a measure of the relative quality of a statistical model. It is 

based on the MLE theory described above and favors models with a high likelihood, i.e., models that 

describe the observed data well. It also penalizes the model complexity, as expressed by the number of 

parameters k:  

𝐴𝐼𝐶 =  −2(log 𝐿(𝜃) − 𝑘) 

AIC is widely used to compare the quality of two models (note that the minus sign implies models 

with lower AIC values are preferable). However, it cannot assess the absolute goodness-of-fit of a 

model, as the absolute value of the AIC has no physical meaning. 

5.2.4. Bayesian information criterion 

The Bayesian information criterion (BIC) is closely related to AIC:  

𝐵𝐼𝐶 =  −2(log 𝐿(𝜃) −
𝑘

2
⋅ log 𝑛) 

where n is the number of data points in 𝑥. There is no consensus in the literature as to whether AIC or 

BIC is generally preferred. As the BIC penalizes the number of model parameters more strongly, it 

favors simpler models more than AIC. 

5.2.5. k-fold cross-validation 

Another well-established technique for model selection is k-fold cross-validation. Usually, a model is 

requested to perform equally well on the data used to infer the model as with data that are independent 

from those used for training. If this is not the case, the model may have been overfitted to the training 

data, which degrades the model predictive capabilities. Cross-validation is an attempt to overcome this 

problem by subsequently withholding some of the available data in the training stage and using these 

(5.17) 

(5.18) 

(5.19) 
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data as a validation set. The available data are split into k (possibly equal) parts. Subsequently, the 

model is trained on the k-1 parts and validated on the remaining part. To choose one of several models 

with different predictor variables, one can compare the average performance of the k validation sets. A 

popular choice in the literature is k = 10. Once there are sufficient data to split into training and 

validation sets, k-fold cross-validation is a meaningful technique for model selection. 

5.3. Occupancy models 

Occupancy has a significant impact on building environmental conditions (e.g., window opening and 

closing, turning on and off of lighting and HVAC systems) and building energy consumption (e.g., use 

of electrical appliances, heating, etc.). Occupancy is therefore a key factor in all other models inputs, 

and so the model for occupant presence is essential to develop these models. 

Markov chains have a wide range of applications in occupancy models (Table 5.2). The occupancy 

models of Richardson et al. (2008) and Page et al. (2008) are the earliest published examples of first-

order Markov chains being used to generate stochastic synthetic occupancy patterns. The first-order 

Markov chain technique has been widely adopted in the development of models of occupancy in office 

buildings (Wang et al. 2011, Liao et al. 2012, Andersen et al. 2014). To determine the lighting and 

heating requirements of a building, occupancy status at the space level is modeled alongside the 

number of occupants (Chang and Hong 2012).  

Wilke (2013) used first- and higher-order homogeneous Markov processes. The higher-order Markov 

process extends the first-order case by including multiple past values. This approach is coupled with a 

survival analysis method, as a Weibull distribution is used to estimate the presence durations from 

higher lags to the current time point. Hence, information about the next time step is not only based on 

presence information, but also on past values through the survival function that also captures the 

durations coherently. 

 

Table 5-2: Examples of occupancy models 

Publication 
Scope (building 

typology) 
Data used Modeling approach 

Page et al. (2008) Household and office Occupancy sensor data 
Time inhomogeneous 

Markov chain 

Richardson et al. (2008) Household Time use data 
Time inhomogeneous 

Markov chain 

Erickson et al. (2009) Office 
Wireless camera sensor 

data 
Agent-based 

Dong et al. (2010) Office 

CO2 sensor, 

Cameras, PIR, 

others 

Hidden Markov Model 

Wang et al. (2011) Office Occupancy sensor data 
Non-homogeneous Poisson 

process 

Wilke et al. (2013) Household Time use data 
High-order Markov chain 

Survival analysis 

Chang and Hong (2013) Office Lighting-switch sensors 
Cumulative and probability 

distribution function 

Mahdavi and Tahmasebi Office Wireless ceiling-mounted Statistically aggregated 
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(2014) sensors (motion 

detectors) 

profiles; building systems 

control 

Andersen et al. (2014) Office 
Electrical ballasts 

triggered by PIR 

Inhomogeneous Markov 

chain with time step as 

covariate 

Feng et al. (2015) Office Occupancy sensor data 
Cumulative and probability 

distribution function 

D’Oca and Hong (2015) Office 
Single or dual occupancy 

data 

Decision tree model; cluster 

analysis 

Sangogboye et al. (2018) Commercial buildings 
Occupancy sensor PIR 

data 

Multiple resolution with 

time-shift agnostic 

classification 

5.4. Window opening models 

In naturally ventilated buildings, window opening and closing behavior is an important control 

mechanism used by building occupants to regulate the indoor air quality, in addition to room air 

temperature. As building envelopes become tighter and better-insulated, window operations gain more 

importance. As transmission heat losses are decreasing, the share of ventilation losses on the overall 

energy consumption of a building has increased. Therefore, there is a high demand for window 

operation models that create realistic patterns for use in building energy simulations. Models for office 

buildings (Haldi and Robinson 2009, Fabi et al. 2014) and residential buildings (Schweiker et al. 2012, 

Calì et al. 2016, Andersen et al. 2013) have been suggested. Most current models were developed as 

inputs for building energy simulation tools. 

Based on a literature review by Fabi et al. (2012), D’Oca and Hong (2014) list the following potential 

drivers for window operation behavior: 

 Physical (indoor and outdoor environment); 

 Psychological (preferences, attitudes); 

 Physiological (age, sex); 

 Contextual (type of environment where the occupants are located); 

 Social (income, lifestyle). 

Calì et al. (2016) found that, in residential buildings, the time of day is one of the most important 

predictors. This indicates that window operations might relate to certain activities or habits. 

The most common modeling approach for window operations is logistic regression as a special case of 

GLMs. In some cases, interaction terms between several predictors are considered. Time dependencies 

are modeled by Markov chains (Fabi et al. 2014, Calì et al. 2016), and survival analysis has been 

applied to model opening durations (Haldi and Robinson 2009). More recently, GLMMs have been 

used to model the diversity in the window opening behavior of occupants (Haldi et al. 2016). 

Fabi et al. (2014) developed different window opening and closing behavior models based on data 

from seven office rooms in Prague. Besides classic predictors such as temperature, relative humidity, 

and indoor CO2 concentration, they also took different volatile organic compounds (VOCs) into 

consideration in their analysis. Multiple logistic regression was applied as a modeling approach, and 

interaction terms between physical and contextual parameters, such as time of day and season, were 
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included in the analysis. A model selection based on AIC with forward and backward selection 

showed a tendency toward the classical parameters. They concluded that indoor temperature, indoor 

relative humidity, and outdoor temperature had the highest influence on window openings, whereas 

window closings were mainly driven by outdoor temperature. The effect of the VOC concentration 

was shown to be rather small. 

D’Oca and Hong (2014) used different data mining techniques to analyze the window opening and 

closing data of 16 offices in a building in Frankfurt, Germany. First, logistic regression together with a 

model selection procedure was applied to identify the most significant opening and closing drivers for 

each office. Additionally, the offices were clustered by the k-means algorithm with respect to the 

following: 

 predictor variables for openings; 

 predictor variables for closings; 

 window opening duration; 

 number of window position changes per day; 

 magnitude of the opening angle. 

Finally, an association rule method was applied to extract two behavioral archetypes of the occupants; 

the first type preferred short openings, a passive operation rate, small opening angles, and were 

influenced by thermal parameters. The second archetype performed more frequent and longer window 

openings with larger opening angles, and their behavior was influenced by time-dependent factors. 

In a rigorous methodology, Calì et al. (2016) identified the most important drivers for window 

operations in residential apartments. Their analysis was based on data collected over a one-year period 

at one-minute intervals from 60 apartments with a total of 300 windows. The room air temperature, 

indoor CO2 concentration, room relative humidity, daily average outdoor temperature, outdoor relative 

humidity, and time of day were taken into consideration. Logistic regression with interaction terms 

between the continuous variables and the categorical variable (time of day; night, day, evening) was 

used as the modeling approach. Model selection was performed by a forward–backward algorithm 

with AIC. Additionally, 10-fold cross-validation was carried out to minimize the bias of the model. 

Out of 300 models for opening and closing, respectively, the most frequent common predictor 

variables were found to be the time of day and indoor CO2 (opening) and the daily outdoor 

temperature and time of day (closing). Counterintuitively, an increase in indoor CO2 was found to be 

correlated with a higher probability of closing. One explanation for this is that high CO2 levels are 

correlated with people’s presence, which is a necessary condition for window operation. The fact that 

the time of day is one of the most important predictors might indicate that window operation behavior 

is often influenced by certain activities or habits rather than environmental conditions. They conclude 

that “Occupants tend to open the windows at specific times of day (probably associated to activities) 

and when the CO2 concentration and relative humidity is elevated. They tend to close windows when it 

is cold outside and at specific times of day (probably associated with their activities).” Furthermore, 

significant differences in behavior according to room type (kitchen, bathroom, other) were found. 

Haldi et al. (2016) developed generalized linear mixed models (g = logit) for window openings, 

window blind usage, and light switching based on datasets from a Swiss office building and residential 

buildings in Germany and Denmark. The methodology had been suggested earlier by Haldi (2013). 
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The proposed models included random effects for all predictors. This allows the inter-individual 

variability to be described, i.e., the diversity in behavior among different occupants, instead of 

modeling the occupants’ average behavior. Hence, the models separate the variability in the data 

corresponding to occupants’ diversity from other sources of uncertainty. These kinds of models are 

especially useful for Monte-Carlo simulations, because an occupant is randomly drawn from a 

population in every simulation run, resulting in a spread of behavior that reflects reality. 

Furthermore, Barthelmes et al. (2017) explored a BN framework for modeling window control 

behavior in the residential sector. Their study addressed five key research questions related to 

modeling window control behavior: (i) variable selection for identifying the key drivers of window 

control behavior, (ii) correlations between key variables for structuring a statistical model, (iii) target 

definition for finding the most suitable target variable (window control actions rather than window 

states), (iv) BN model with the ability to treat mixed data, and (v) validation and demonstration of the 

high predictive power of stochastic BN models. 

An overview of different model approaches is given in Table 5-3. 

 

Table 5-3: Examples of window opening models 

Publication Scope (building type) Data used Modeling approach 

Fritsch et al. (1990) Office 
Office laboratory (LESO), 

Switzerland 

Markov chain dependent on 

ambient temperature 

Haldi and Robinson (2009) Office 
Office laboratory (LESO), 

Switzerland 

Markov chain with logistic 

regression and survival 

analysis 

Schweiker et al. (2012) Residential 
Swiss dwellings and 

Japanese dormitory 
Bernoulli and Markov 

Andersen et al. (2013) Residential 

Rented apartments and 

privately owned houses in 

Denmark 

Markov with Logistic 

regression including 

interaction terms 

Fabi et al. (2014) Office 
Offices in Prague, Czech 

Republic 

Markov with Logistic 

regression including 

interaction terms 

D’Oca and Hong (2015) Office 
Offices in Frankfurt, 

Germany 

Logistic regression, k-means 

clustering, association rule 

Calì et al. (2016) Residential 
Apartments in Karlsruhe, 

Germany 

Markov with logistic 

regression including 

interaction terms 

Haldi et al. (2016) Office and Residential 

Offices in Switzerland, 

dwellings in Denmark and 

Germany 

Generalized linear mixed 

effects model 

Barthelmes et al. (2017) Residential 
Apartment in Copenhagen, 

Denmark 
Bayesian networks 

5.5. Window shading adjustment models 

There is a variety of window shading devices of different materials (aluminum, cloth), positions 

(interior, exterior), and appearances (Venetian blinds, vertical types). They have three main purposes: 

1) to avoid or at least minimize situations of visual discomfort due to glare, 2) to reduce solar radiation 

entering the room, thereby reducing the thermal load, and 3) to provide privacy by blocking the view 

into the building from outside. Nevertheless, any one of these purposes can have a negative effect on 
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the other aspects. For instance, during wintertime, the usage of external blinds to avoid glare issues 

will reduce the solar input. On the other hand, during summertime, the usage of blinds to reduce solar 

radiation may interfere with aspects of visual comfort such as a clear view outdoors. Overall, window 

shading devices are at the intersection of thermal and visual comfort, together with the energy use for 

heating and cooling. Therefore, modeling their usage during the design process is extremely 

meaningful in terms of optimizing all these effects. 

Despite the importance of shading, there are fewer sun shading models than, window opening models 

(Table 5.4). Current methods can be grouped into those that model the shading state (or its change) as 

a binary outcome (open or closed) and those that model the shading device position (or its change). 

The statistical methods applied include descriptive analysis, linear regression models, and logistic 

regression models. 

 

Table 5-4: Examples of window shading models 

Publication Scope (building type) Data used Modeling approach 

Reinhart (2004) Office (State change) Field data 
Decision tree including 

logistic regression 

Andersen et al. (2009) Residential (Blind state) Survey Logistic regression 

Haldi and Robinson (2008) Office (Blind state) Field data Markov chain 

Mahdavi et al. (2008) Office (Usage frequency) Field data Linear regression 

5.6. Light switching models 

Lighting is a major electricity end use in domestic homes and office buildings. Because of fluctuations 

in daylight availability, lighting also causes most of the variation in both annual and diurnal demand 

(Stokes et al. 2004, Widén et al. 2009). Therefore, in recent years, there have been an increasing 

number of attempts to incorporate daylight into building designs (Zhu et al., 2017). 

Studies on the modeling of lighting energy use have mostly focused on small office and residential 

buildings, with the research findings greatly dependent on building layout and daylight control 

systems (Table 5-5). Studies have shown that the two main factors affecting lighting energy use are 

outdoor illuminance and occupant behavior (Zhou et al. 2015). One common method for predicting 

lighting energy use combines lighting power density information with lighting schedules. Hunt (1979) 

introduced a stochastic model to calculate the probability of turning on lights after the arrival of 

occupants. He concluded that the probability of occupants turning on lights increased when the 

illuminance of the working surface was below 100 lx. The first report of a stochastic approach to 

manual lighting control was by Newsham et al. (1995), who developed a model called Light-switch 

that simulated user occupancy in the workplace based on measured field data from an office building 

in Ottawa, Canada. Widén et al. (2009) used Markov chains to estimate the probability of occupant 

movement. The probability of turning on lights was modeled as a decision based on the lighting level 

and occupant movement. 

 

 

 

Table 5-5: Examples of lighting models 
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Publication Scope (building type) Data used Modeling approach 

Hunt (1979) Office and UK school 
Daylight level collected by 

time-lapse photography 

Probit analysis; integrated 

ESP-r and EnergyPlus 

Newsham et al. (1995) Office 

Occupancy sensor and work 

place illuminances due to 

daylight 

Markov chain 

Stokes et al. (2004) Household 
Half-hourly measured 

lighting power demand 
Object-based 

Reinhart (1994) Office 

Occupancy sensor and 

workplace illuminance due 

to daylight 

Inverse transform sampling 

Richardson et al. (2008) Household 

Occupancy time use data 

and outdoor irradiance data 

series 

Markov chain non-

homogeneous 

Widén et al. (2009) Household 

Occupancy time use data 

and lighting measured 

indirectly with light sensors 

Markov chain non-

homogeneous 

Zhou et al. (2015) Office 

Measured lighting energy 

use data with sub-metering 

systems 

Poisson process 

5.7. Thermostat adjustment models 

Occupants’ thermostat use behavior is one of the most influential factors in a building’s HVAC energy 

performance (Zhou et al., 2016). In the residential sector alone, thermostats control approximately 

10% of the total energy use in North America (US DOE 2015, NRCan 2011). Although occupants in 

commercial spaces tend to have less control over their thermostats, it has been reported that individual 

control of the indoor temperature improves productivity and employee satisfaction (Fountain et al. 

1996, Leaman and Bordass 2000, Wyon 2000). In response to these research findings, it is becoming 

widespread practice to provide a ±2–3°C of individual control over the default temperature settings in 

offices. 

Until recently, the lack of longitudinal thermostat use data from homes and offices meant that research 

on thermostat use behavior relied on surveys (Peffer et al. 2011, Karjalainen 2009). However, since 

the early 2010s, thermostat use data from both homes and offices have become available. Smart 

thermostat companies now provide access to residential thermostat use data. For example, the Donate 

Your Data program by Ecobee thermostats has provided access to many years of thermostat use data 

from over 10,000 homes in North America. In office buildings, thermostat use data have been 

collected through building energy management systems that archive the sensor data in building 

automation systems. 

In the reviewed literature, there are only a few statistical models for thermostat use behavior in homes 

and offices. For example, D’Oca et al. (2014) implemented a thermostat use model in building 

simulations using data gathered from 15 dwellings by Andersen et al. (2013). D’Oca et al. (2014) 

clustered occupants into active, medium, and passive users and trained multivariate logistic regression 

models to predict the likelihood of a set-point increase or decrease. For active users’ set-point 

increase behavior, their regressors were the time of day, indoor relative humidity, and the outdoor 

temperature. The active users’ set-point decrease behavior was predicted by looking at the outdoor 
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horizontal solar radiation. For medium users’ set-point increase behavior, the selected regressors 

were the outdoor temperature and the wind speed. In addition, their set-point decrease behavior was 

predicted by looking at the time of day. For passive users’ set-point increase behavior, the likelihood 

was a uniform distribution with no predictors, and their set-point decrease behavior was modeled as a 

function of the outdoor horizontal solar radiation. Another residential thermostat use model was 

introduced by Ren et al. (2014), who gathered air-conditioning unit usage data from over 30 

apartments in China. They developed a three-parameter discrete Weibull distribution model to 

represent occupants air-conditioning usage, considering indoor temperature, CO2 concentration, and 

occupancy state as the model regressors. 

For office buildings, Gunay et al. (2017) developed a thermostat use model using data gathered from 

38 private offices. Their dataset comprised concurrent thermostat keypress, occupancy, indoor 

temperature, relative humidity, and outdoor temperature records. They developed discrete-time and 

discrete-event Markov logistic regression models to predict the likelihood of a set-point 

increase/decrease action during occupied hours. They identified the indoor temperature as the best 

predictor among the three environmental variables of the dataset for the thermostat set-point increase 

and decrease actions. Although there was an improvement in the model with the addition of the 

outdoor temperature as a predictor, the indoor relative humidity did not improve the predictive 

accuracy. The parsimony of the models was assessed by looking at the AIC and BIC values, and the fit 

of the models to the dataset was assessed by looking at the p-value and standard error of each 

regressor and the pseudo R² values. 

With the increased availability of datasets, it is expected that more thermostat use behavior models 

will be developed for different building and occupant archetypes. The lessons learned from analyzing 

large thermostat use behavior datasets will have an impact on building operations practices and 

thermal comfort standards. 

 

Table 5-6: Examples of thermostat models 

Publication 
Scope (building 

type) 
Data used Modeling approach 

Ren et al. (1995) Residential Indoor temperature, CO2, and occupancy 
Discrete Weibull 

distributions 

Haldi et al. 

(2008) 
Office 

Clothing and activity level, thermal sensation and 

preference, indoor temperature, outdoor 

temperature, thermal comfort vote 

Logistic regression-

based model 

D’Oca et al. 

(2014) 
Residential 

Time of day, indoor relative humidity, outdoor 

temperature, outdoor horizontal solar radiation, 

wind speed 

Markov chains with 

Logistic regression  

Corgnati et al. 

(2014) 
Residential 

Heating set point, indoor temperature, outdoor 

temperature 

Model combined with 

incremental philosophy 

and probabilistic 

approach 

Langevin et al. 

(2015) 
Office 

Field comfort and 

behavior data 
Agent-based model 

Gunay et al. 

(2017) 
Office 

Indoor temperature, outdoor temperature, relative 

humidity, occupancy 
Markov chains 
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5.8. Appliance use models 

Occupants’ use of household electrical appliances is an important aspect in understanding behavior in 

domestic buildings and has received significant interest for building simulations (Swan and Ugursal 

2008, Grandjean et al. 2012). Researchers have developed methods to predict the temporal evolution 

of appliance electricity demand with different time- and space-scale considerations. Occupant 

behavior models of household electrical appliance use have been used in many applications, such as: i) 

better predictions of time variations in the demand and peak power demand for analyzing the impact 

of energy-efficiency schemes or to examine the demand response following modifications to the 

network load flows after the integration of renewable energy sources (Yamaguchi et al. 2011, Paatero 

and Lund 2010, Gottwalt et al. 2011); ii) heat-gain models for estimating the performance of low-

carbon buildings (Hoes et al. 2009); and (iii) studying the impacts of Plug-in Hybrid Electric Vehicle 

charging and discharging on residential demand profiles at specific times (Grahn et al. 2013, Paevere 

et al. 2014). 

For appliance models, an approach has been formulated in which the switch-on times of the appliances 

are determined via Monte Carlo simulations. Appliance models are often linked with an occupancy 

models, whereby an appliance is only switched on if there is at least one occupant present in the 

household (Page 2007, Richardson et al. 2010, Wilke et al. 2012). Table 5-7 summarizes the studies 

that have modeled activities related to electricity, appliance usage, and appliance electricity demand. 

 

Table 5-7: Examples of appliance models 

Publication Model 
Scope (building 

typology) 
Data used 

Modeling 

approach 

Capasso et al. (1994) 
Appliance electricity 

demand 
Household Time use datasets Monte Carlo 

Yamaguchi (2003) Electricity demand Office Statistical data Markov chain 

Paatero and Lund 

(2006) 

Appliance electricity 

demand 
Household Statistical data Monte Carlo 

Page (2007) 
Appliance usage and 

electricity 
Household and Office 

Monitored appliance 

using sensors 
Monte Carlo 

Tanimoto et al. (2007, 

2008, 2011, 2012) 

Heating and air 

condition usage 
Household Time use datasets Markov chain 

Haldi et al. (2008) 

Fans, cold drinks, 

activity and clothing 

model 

Office 
Clothing and activity 

level, adaptive action 

Logistic 

regression 

Widén and Wäckelgård 

(2010) 

Appliance usage and 

electricity 
Household Time use datasets 

First-order 

Markov chain 

Richardson et al. (2010) 
Appliance usage and 

electricity 
Household Time use datasets Monte Carlo 

Gottwalt et al. (2011) 
Appliance usage and 

electricity 
Household Statistical data Monte Carlo 

Wilke et al. (2013) Appliance usage Household Time use datasets Monte Carlo 

Langevin et al. (2015) 
Fan, heater, and 

window use 
Office 

Field comfort and 

behavior data 
Agent based 

Mahdavi et al. (2016) Plug loads Office 
Plug load data, PIR 

data 

Weibull 

distribution 

Yilmaz et al. (2017) Appliance usage Household 
Monitored appliance 

using sensors 
Monte Carlo 
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5.9. Modeling the diversity of occupants 

To date, most occupant modeling research has focused on developing occupancy and occupant 

behavior models for typical occupants or households. While stochasticity and uncertainty have taken 

hold in the past decade, we may be failing to capture one of the greatest sources of uncertainty—the 

details of individual occupants and the diversity between them. This is evidenced by many occupant 

simulation studies that indicate a much smaller simulated range in possible behaviors than has been 

measured in reality (O’Brien and Gunay et al. 2016, Pisello et al. 2017). While one source of the 

common “gap” between measured and modeled energy performance of buildings is occupant behavior, 

another cause for this discrepancy is the modeling of average occupant behavior rather than explicitly 

recognizing their diversity (Dar and Georges et al. 2015). As a result, existing models have a limited 

ability to test the robustness of building designs and other applications of occupant modeling that 

require an understanding of the probabilistic distribution of predicted building performance. 

The prevalent modeling approaches for representing diversity are: (1) developing occupant types (e.g., 

“passive” and “active”) and having discrete models or model coefficients for each type or (2) using a 

mixed modeling approach (e.g., LMMs) whereby a so-called random effect is used to describe inter-

occupant diversity. The former method, which has been applied since the early 2000s (Reinhart 2004), 

is more intuitive, tangible, and generally requires fewer simulations to model a population. However, 

it is not clear whether occupants can truly be discretized into types and what the appropriate ratio 

between types is for a given population. The newer LMM approach resolves the last two drawbacks of 

the discrete occupant type modeling methods. LMMs also provide continuous distributions and allow 

the impact of multiple behavioral domains to be propagated using Monte Carlo simulations. However, 

the LMM approach is likely to require a greater number of simulations than when only a few occupant 

types are modeled. Table 5-8 summarizes the modeling approaches used to represent the diversity of 

occupants.  

 

Table 5-8: Examples of modeling the diversity of occupants 

Publication Model 
Scope (building 

typology) 
Data used 

Modeling 

approach 

O’Brien et al. (2016) Office occupancy Private office 
Event-based 

occupancy data 

Markov 

chain with 

linear mixed 

effects model 

Haldi et al. (2016) 

Operable windows, 

window shading 

devices, electric lights 

Homes and offices 

Monitored operable 

window, window 

shading device, and 

light state and 

corresponding indoor 

and outdoor 

environmental 

conditions 

Markov 

chain with 

generalized 

linear mixed 

effects 

models 

Schweiker et al. (2016) 

Window opening, 

blind adjustments, 

usage of ceiling fans, 

and clothing behavior 

Office 

Monitored operable 

window, window 

shading device, ceiling 

fan state, clothing 

insulation level, indoor 

and outdoor 

environmental, 

psychological traits 

Multivariate 

logistic and 

linear mixed 

effects model 
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5.9.1. Occupant diversity modeling research 

This section summarizes three recent papers on the topic of occupant diversity modeling. The first two 

are statistical approaches that quantify the distribution of occupant characteristics, while the third 

analyzes patterns from a priori defined groups of occupants. 

O’Brien et al. (2016) used a multi-year occupancy dataset from 16 private offices to investigate three 

hypotheses: 1) parameters that define individual occupants have continuous rather than discrete 

distributions; 2) occupant models that are derived from aggregate data of multiple occupants results in 

suppressed diversity; and 3) randomly drawing from multiple occupant trait distributions will lead to 

unrealistic synthetic occupants. The third hypothesis requires a brief summary of the mixed modeling 

method. The simulation approach involves two steps: i) generate a synthetic occupant from the model 

parameter distributions (assumed to be normally distributed) that were estimated from the sample of 

16 occupants, and ii) simulate each individual synthetic occupant (and repeat numerous times for 

Monte Carlo analysis). Hypothesis 3 refers to the fact that, in the first step, the failure to maintain 

correlations among occupant parameters (e.g., probability to start a long absence and likelihood of 

coming or leaving at a given time step) between the observations and synthetically generated data will 

result in unrealistic synthetic occupants. The method used by O’Brien et al. followed a similar 

occupancy modeling approach as that of Page and Robinson et al. (2008). The results showed that the 

parameters defining the occupancy patterns of the 16 occupants have a relatively continuous 

distribution and do not form clusters (hypothesis 1). When model parameters were extracted from the 

aggregated occupancy data, the resulting model closely resembled the mean occupant, but failed to 

reproduce the measured diversity (hypothesis 2). The parameter correlations among the 16 occupants 

showed some significance. For instance, occupants who tend to arrive early in the morning also have a 

lower probability of taking a day-or-longer break. As a result, randomly selecting parameters from 

each parameter distribution yielded some unrealistic synthetic occupants; this was not observed to the 

same extent when parameter correlations were maintained (hypothesis 3). This study provided some 

preliminary evidence that current practice requires new methods to model diversity. It also indicated 

the need for greater sample sizes to reach stronger conclusions for occupancy and other related 

domains.  

Haldi et al. (2016) sought to generalize the discrete-time Markov chain modeling approach of previous 

efforts (Haldi and Robinson 2009, 2010) to incorporate diversity between occupants. Their study used 

three datasets from offices and residential buildings across Europe: 1) offices in Lausanne, 

Switzerland, 2) apartments in Copenhagen, Denmark, and 3) apartments in Baden Wuerttemberg, 

Germany. The occupant-related domains included operable window, lighting, and window blind use. 

For all of these domains, two methods were compared: (1) the GLM approach, whereby all occupant 

data were first aggregated and (2) the GLMM (or LMM, as defined in Section 5.2.3) approach, 

whereby each occupant was modeled separately and then the regression parameters (assumed to be 

normally distributed) were computed. An example of the two approaches is illustrated in Figure 5-2. 

The GLMM approach was found to yield standard parameter errors of approximately three to five 

times those of the classical GLM approach. This indicates that the new approach is much more 

suitable for representing true inter-occupant diversity. Haldi et al. (2016) also recognized the 

consequences of overweighting certain occupants in the classical GLM approach and that this could be 
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resolved by the mixed model approach. Overall, Haldi et al. (2016) reached many of the same general 

conclusions as O’Brien et al. (2016). 

 

Figure 5-2: Comparison of classic modeling approach and mixed model with random effects 

approach, where each green line represents a logistic regression curve for an individual 

occupant’s probability to open their window as a function of indoor CO2 concentration  

Schweiker et al. (2016) analyzed data from experimental studies in Germany. In contrast to the studies 

described above, the dataset was divided into subsets before the statistical analysis of behavioral 

patterns. The subsets were defined based on personal characteristics of the subjects; more specifically, 

whether the subject had a high or low value of a specific personality trait. In psychology, a trait is a 

specific characteristic of an individual’s personality that is stable over a longer period. The personality 

traits of neuroticism, extraversion, openness to new experiences, and general self-efficacy were 

defined. By means of multivariate logistic and LMM analyses, it was shown that all personality traits 

lead to significant differences between behavioral patterns for window opening, blind adjustments, 

usage of ceiling fans, and clothing behavior. Thereby, it was shown that this approach could be helpful 

for understanding the behavioral patterns of specific subgroups, e.g., to understand the behavioral 

patterns of the elderly when designing a home for the elderly. At the same time, such an attempt—

scarce as it is—may help to explain the underlying mechanisms of occupant behavior. 

5.10. Occupant behavior modeling summary 

The chapter has described the techniques commonly used for modeling occupant behavior. The 

modeling approaches include general and generalized linear models, mixed effects models, linear time 
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series models, (hidden) Markov chains, and Bayesian networks. A “good” model is generally 

considered to be one that explains the observed data well, generalizes to more data, and is as simple as 

possible. To arrive at such a model, a process of model selection is used to find the set of predictor 

variables that build the most appropriate model.  

The use of different modeling approaches was exemplified by describing some of the major modeling 

approaches in the literature, divided into different the behaviors and presence types for which they 

were developed. Occupancy modeling aims to determine the occupants’ presence either as the 

occupancy status at the space level or as the number of occupants in a building. Typical approaches 

use Markov chains or inverse transform sampling.  

Numerous window opening models have been introduced as input for building energy simulation 

tools. Markov chains, generalized linear models, generalized linear mixed effects models, and 

Bayesian networks have been used to model window openings in residential and office buildings.  

Window shading models are less common. The typical approach is to use logistic or linear regression 

and Markov chains.  

Models of occupants’ light switching behavior have mostly focused on small offices and residential 

buildings. The typical approach is to use Markov chains and Poisson processes. 

The relatively few statistical models for thermostat use behavior in homes and offices rely on Markov 

chains and discrete Weibull distributions.  

In most models of appliance use, the switch-on times of the appliances are determined via Monte 

Carlo simulation. The models often rely on Markov chains, and many occupant behavior models use 

data that have been aggregated over dwellings, offices, or occupants. As a result, the models may fail 

to capture details of individual occupants and the diversity between them.  

The final part of this chapter discussed modeling approaches that capture diversity amongst occupants 

through examples from the literature. This topic remains a challenge and deserves further research. 

5.10.1. Occupant behavior modeling nomenclature 

P probability measure 

Y outcome variable 

X 
input variable, regressor, predictor, explanatory variable, fixed 

effect  

β regression parameters 

U random effects 

Z random effects parameters 

n number of observations 

k number of model parameters 

θ, φ model parameters 

μ mean value 

σ standard deviation 
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Σ variance-covariance matrix 

ε model residuals 

g transfer function 

logit logit function 

Γ transition probability matrix 

AIC Akaike’s information criterion 

BIC Bayesian information criterion 

H0 null-hypothesis 

p p-value 
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6. Evaluation of Models 

This chapter of the report primarily concerns the necessary conditions for the systematic evaluation 

procedures as targeted toward models of occupants' presence and actions in buildings. To appreciate 

the critical importance of this issue, a brief reminder of the role of inhabitants' models in the larger 

context of building performance simulation is reported. 

6.1. Model evaluation background 

Building performance simulation models typically require information to be input regarding the 

context (climate), building geometry, construction, systems, and internal processes. Whereas the 

specification methods for physical building components and properties (pertaining, for example, to 

building fabrics and construction) in building performance simulations are fairly well established, 

representations of occupants (presence, movement, behavior, perception, and evaluation) are 

frequently rudimentary. It has been suggested that simplistic representations of people as passive and 

static entities have diminished the reliability of building performance assessments and building 

operation planning processes (e.g., D’Oca et al. 2014, Liang et al. 2016). Adequate representations of 

building inhabitants must address building occupants’ passive presence in more detail, as well as the 

multi-dimensional scope and dynamic nature of their actions (e.g., interactions with buildings’ indoor 

environmental control devices and systems). A further, related phenomenon that needs to be 

considered in any model development activity is the occupants’ behavioral diversity (Mahdavi and 

Tahmasebi 2015a, O’Brien et al. 2016, Haldi et al. 2016).  

In the past, representations of buildings’ occupants in performance simulation models have mostly 

consisted of fixed schedules (so-called diversity profiles) and rule-based action models. As such, it has 

been argued that these kinds of representations do not realistically reflect the inherent temporal 

fluctuations of occupancy-related processes and events (e.g., entering, leaving, and moving in 

buildings, operation of devices such as windows, blinds, luminaires, manipulation of control set-

points, equipment usage). Thus, there have recently been a considerable number of efforts—especially 

by professionals in the building performance simulation community—to develop more sophisticated 

dynamic models of occupant presence and actions in buildings in terms of stochastic algorithms (for 

example, reviewed by Parys et al. 2011) and agent-based representations (e.g., Langevin et al. 2015, 

Chen et al. 2016).  

A significant number of such efforts have focused on the potential of probabilistic methods and 

associated formalisms. Thereby, a stated objective has been to replace fixed schedules and rule-based 

actions models in performance simulations with high-resolution probabilistic models. A number of 

such models have been incorporated in building performance simulation applications. Such efforts are 

undoubtedly important. However, they have not been immune to a number of misconceptions 

regarding model evaluation and application considerations (Mahdavi 2011, 2015; Mahdavi and 

Tahmasebi 2016b). At times, models have been prematurely promoted as valid and reliable, despite a 

lack of empirical evidence and information regarding the downstream deployment scenarios. The 
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inclusion of sophisticated and realistic behavioral models in building performance assessment 

applications is of course desirable, but must proceed in a careful and systematic manner, lest confusion 

and poor decision making result, e.g., from the uncritical implementation and application of all kinds 

of insufficiently tested behavioral models.  

Given this background, the present section is primarily motivated by the lack of general procedures 

and guidelines for the evaluation of user-related behavioral models. To encourage a deeper discourse 

in this area, we specifically formulate a number of conditions that are necessary for the systematic and 

dependable enrichment of building performance assessment applications with behavioral 

representations of buildings’ occupants. To this end, we use a number of the assertions and findings 

formulated by Mahdavi and Tahmasebi (2016b). We discuss both general model evaluation 

requirements and specific circumstances pertaining to models of building occupants. The section 

concludes with a case study to illustrate exemplary model evaluation processes (Tahmasebi and 

Mahdavi 2016). Given the rapidly evolving state-of-the-art in the area of occupancy-related model 

development and the integration of models into the workflows pertaining to the building delivery 

process, it is unlikely that ultimate and definitive guidelines for model evaluation can be formulated at 

this time. The case study is intended to illustrate potentially paradigmatic model evaluation steps by 

comparing a number of recently proposed behavioral models. The main objective is to present and 

promote a rigorous process toward quality assurance while considering and integrating behavioral 

representations in building performance assessment tools and practices. 

6.2. General principles concerning model evaluation 

A central tenet of scientific activity is the development of models to describe phenomena and predict 

events. Despite the persistence and historical evolution of model development activity across a variety 

of scientific disciplines (e.g., Hulley et al. 2013, Oleckno and Anderson 2002), a brief treatment of the 

question of model validation in the context of occupancy-related behavioral models would be 

beneficial. Note that a considerable number of shortcomings in the recent development and evaluation 

efforts regarding behavioral models are the consequence of the following three circumstances: 

 Firstly, systematic occupancy-related studies in the context of the built environment 

belong to a relatively young field of inquiry. Note that the strength of research standards in a 

specific domain typically results from the expected utility and a critical mass of projects and 

researchers in that domain. Compared to many other areas of scientific inquiry (such as 

physics, biology, and medical sciences), research pertaining to occupant behavior in buildings 

is much less developed. A closer instance for comparison purposes would perhaps be research 

on human comfort in general and thermal comfort in particular. The latter has a longer tradition 

and is arguably better established, but many open research questions and challenges persist 

(Schweiker and Wagner 2016, Shipworth et al. 2016, Mahdavi et al. 2016). 

 Secondly, a persistent problem for both model development and model evaluation lies in 

the rather limited availability of large-scale observational data. Consequently, the 

demographic basis of the majority of proposed behavioral models is often extremely small. The 

coverage and representativeness of behavioral models of building occupants depends on the 
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availability and fidelity of observational data. As such data are still hard to come by, models 

are often developed and disseminated with insufficient empirical backing. This circumstance 

has also affected the aforementioned thermal comfort research, albeit to a lesser degree.  

 Thirdly, behavioral models require—in principle—the concurrent consideration of 

multiple physical, physiological, psychological, and socio-cultural parameters. To conduct 

field or controlled studies addressing this complex pattern of potential causal factors is 

anything but trivial. The multifarious nature of potential influences and contributory factors to 

behavior actions creates a “background noise.” Against this background, it is often difficult to 

discern the typically low-strength “signal” of causal factors hypothesized to be behind 

behavioral manifestations (Mahdavi et al. 2016). 

Obviously, a number of the abovementioned challenges in behavioral model development and 

evaluation cannot be met in the short run. The collection of vast amounts of reliable observational data 

in the course of field studies is laborious, time-consuming, and costly, and can be hampered by legal 

and ethical constraints. Likewise, conducting experimental behavioral studies is exceedingly difficult 

and the corresponding results cannot be readily generalized. This, however, does not mean that the 

invested community cannot improve the related conditions and processes. To this end, a critical 

assessment of past efforts in model development and application is essential. Specifically, avoiding 

certain common misconceptions would help to guide the behavioral modeling discourse in a more 

solid direction (Mahdavi 2015). Some of the key issues may be formulated as follows: 

1. Model accuracy. Arguments pertaining to certain occupancy-related modeling approaches 

frequently display a certain confusion of simulation (computational, typically dynamic 

representation of a system’s behavior) with prediction. Long-term exact predictions of 

buildings’ energy and thermal performance are unrealistic, even under the speculative 

assumption that the internal (occupancy-dependent) processes could be accurately modeled. 

As an analogy, the long-term unpredictability of external weather conditions falsifies claims of 

exact predictions. A more reasoned view of performance simulation appears to lie in its utility 

toward complex system analysis, rather than accurate long-term predictions. As such, it is 

important to understand that the frequent mismatch between simulation-based predictions and 

observations of energy use (the so-called performance gap) is not necessarily, automatically, 

or exclusively due to behavioral factors. Long-term accurate predictions of building 

performance indicators are difficult to make because of the extensive list of uncertainties 

pertaining to internal (occupancy-related) processes and external conditions, as well as 

assumptions regarding building fabrics and building systems.  

2. Terminology. In model comparison and evaluation discourse, the term “deterministic,” which 

has a weighty philosophical baggage (Mahdavi 2015), is often used in a potentially misleading 

manner to characterize fixed diversity profiles (e.g., assumed fixed schedules of occupants’ 

presence) and rule-based behavioral models. From this inaccurate terminology, the inference 

is then made that building simulation results would necessarily be more “accurate” if 

occupancy-related diversity profiles and rule-based assumptions were simply replaced with 
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more detailed probabilistic ones (e.g., Tahmasebi and Mahdavi 2015, 2016). There is no 

conclusive empirical evidence that specific modeling formalisms automatically result in more 

accurate building performance simulations.  

3. Value in different model methods. A class of occupancy-related modeling efforts follow the 

notion that “people behave randomly,” and hence can exclusively be represented in simulation 

models via stochastic formalisms. There is nothing wrong with constructing data-driven black-

box models of occupants’ control actions, nor is there anything wrong with the use of 

probabilistic methods to generate realistic occupancy-related patterns. In fact, many valuable 

lessons can be learned from the careful deployment of probabilistic modeling techniques in the 

representation of occupants in building performance simulations. However, this does not point 

to the absence of a motivational (and potentially causally effective) field shaped by 

physiological, psychological, and social factors. Hence, efforts toward developing grey-box 

(or even white-box) behavioral models are both warranted and potentially illuminating. 

4. Model validation. Any statements about the validity of specific behavioral models can only 

be assessed on the basis of carefully prepared documents of the model development and 

evaluation procedures (such as research design, empirical basis, hypotheses and assumed 

causal factors, and limitations). This should enable any independent attempts to retrace, 

comprehend, and reappraise such procedures. Moreover, behavioral models should not claim 

to be generally “validated” based on a limited set of observational data. Specifically, datasets 

for model development and model evaluation should not be conflated. Paucity of empirical 

information does not justify testing a model based on the same dataset used for its 

development. 

5. Extrapolation. It is important not to carelessly extrapolate from a single limited behavioral 

study to all kinds of populations, building types, locations, and climates. This is especially 

critical in the case of black-box models, which typically lack explicit causal explanations.  

6. Peer evaluation. Similar to other domains in which model evaluation is critical, the 

behavioral modeling field must safeguard against bias. Internal evaluation by model 

developers does not provide conclusive evidence for a model’s general reliability. While not 

easy to conduct, external evaluation procedures, double-blind studies, and round-robin tests 

are undoubtedly useful in supporting the evaluation of a model’s performance.  

7. Underlying data quality. It is of great importance to exercise care when incorporating 

insufficiently documented and poorly tested behavioral models in broad-scale simulation 

applications, lest potential users are misled into assuming such models necessarily capture the 

“reality” of occupants’ presence and behavior in buildings. 

A more concrete treatment of a number of the abovementioned issues is given later in this section 

through a paradigmatic case study (see section 6.6). However, prior to the case study, two specific 
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challenges regarding model verification in the building performance evaluation domain need to be 

addressed: 

 Fit-or-purpose simulation. The reliability and appropriateness of a specific behavioral model 

cannot be discussed in isolation from the specific circumstances of its deployment in the 

simulation-assisted building performance evaluation workflow. In other words, building 

simulations can be deployed at very different stages of the building delivery process and for very 

different purposes. Consequently, it would be misguided to assume that a specific modeling 

approach or technique can be appropriately applied to all kinds of use cases (see Gaetani et al. 

2016, Mahdavi and Tahmasebi 2016a). Given the significance of this point, it is treated in more 

detail in section 6.3. 

 Predictive performance. The “feedback” circumstance in occupant behavior models involving 

indoor environmental explanatory variables poses a specific challenge for model evaluation efforts. 

As such, the output of behavioral models (i.e., states of devices) influences the inputs (i.e., indoor 

climate conditions). Obviously, empirical data cannot be obtained for every possible sequence of 

actions predicted by behavioral models. Section 6.5 addresses some of the approaches that have 

been adopted to evaluate the predictive performance of occupant behavior models.  

6.3. Deployment dependence of model evaluation 

Performance simulation models can have different levels of resolution with regard to the 

representation of the underlying (physical) phenomena, required (input) information, and results 

(output). The choice of a specific level of resolution is generally dependent on the problem being 

solved by the simulation model. In this context, an important case in point pertains to possible choices 

of the type and resolution of representations of occupants’ presence and behavior in building 

performance simulation models. The relationship between these choices and the purpose of the 

simulation-assisted analyses is not well understood. This, however, represents a practical problem, as 

it implies that adopted methods in capturing occupants’ presence and behavior in a simulation process 

may in fact be unsuited to the specific simulation scenario. Likewise, it can be argued that the criteria 

for the evaluation of the representational fidelity of occupants’ presence and behavior in buildings are 

dependent on the types of studies undertaken in the course of deploying the simulation tool.  

Few studies have explicitly addressed the fitness of occupancy-related models with regard to different 

simulation queries. In a different context, Gupta and Mahdavi (2004) first proposed a perspective for 

viewing and structuring the performance queries in terms of a multidimensional query space. The 

classification of queries was intended to render them more suitable for analysis, resulting in enhanced 

responses through the selection and execution of appropriate computational tools and techniques. 

Specific to the deployment of occupancy models, Hoes et al. (2009) used sensitivity analysis to arrive 

at the minimal required user model resolution with regard to a number of building performance 

indicators and design parameters. That is, when a performance indicator is determined to be more 

sensitive to occupancy-related assumptions, the simulation effort should start with a more 

sophisticated model of occupancy (and if the performance indicator still does not fall within the 

required target value range, a higher resolution level should be applied). However, the focus of their 
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study is on the design stage and empirical data are not used to confirm the conjecture that more 

sophisticated models would necessarily provide more accurate results.  

Given the multitude of scenarios (i.e., use cases involving different users, different phases of the 

building delivery process, different queries) in which building performance simulations can be 

deployed, a well-structured conceptual framework with a multi-dimensional simulation deployment 

space is of utmost importance. Such a framework is not only a prerequisite for establishing a solid 

basis for evaluating the suitability of alternative modeling techniques and resolutions with regard to 

occupants’ presence and behavior in buildings, but also contributes to substantiating the evaluation 

process of such modeling techniques. Table 6-1 briefly outlines nine dimensions that are directly 

relevant to the selection of appropriate occupancy-related models (Mahdavi and Tahmasebi 2016). 

 

 Table 6-1: Dimensions of the proposed simulation deployment space  
 

Dimension Remarks/examples 

i Phase in the building delivery process 
Early design, detail design, HVAC systems design, building 

operation 

ii Purpose (or nature) of the study 
Parametric study of design options, generation of energy 

compliance documents, HVAC system sizing, HVAC controls 

iii Domain (discipline) Energy, thermal comfort, lighting, acoustics, fire safety 

iv Building type 
Dominant function of the building (residential, commercial, 

educational, mixed use) 

v Indoor climate control strategy Passive, hybrid (mixed mode), fully air-conditioned 

vi Physical destination Building details, whole buildings, campus, district, urban 

vii Spatial resolution Whole building, individual floors, orientations, micro-zoning 

viii Performance indicator (results) 
Annual heating/cooling demand, peak heating/cooling loads, 

predicted mean vote (PMV) 

ix Temporal resolution (horizon) Entire lifecycle, annual, monthly, daily, hourly, sub-hourly 

To demonstrate and elaborate on the desirability and usability of such a framework, Mahdavi and 

Tahmasebi (2016a) tested specific case studies involving probabilistic and non-probabilistic 

occupancy models. Their findings suggest that we cannot simply declare a priori that a particular 

modeling technique for generating occupancy-related input information for performance simulations is 

superior to others. Rather, we must carefully consider the circumstances pertaining to the nature of the 

application scenario, such as the time horizon of predictions or the granularity of performance 

indicators. In other words, there are good reasons to suggest that the choice of an appropriate 

occupancy model and the criteria for evaluating its performance depend on the position of the relevant 

simulation-based query within the proposed application space. 

6.4. Evaluation statistics 

One of the fundamental challenges of evaluation procedures for behavioral models of building 

inhabitants pertains to the paucity of systematically classified model performance metrics. The 

professional community has arguably not converged toward a systematic and expressive set of 
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statistics for quantifying the predictive performance of behavioral models. Some of the reasons for this 

were alluded to in the introductory sections. Given the variety of domains and application scenarios of 

behavioral models, identifying a definitive set of evaluation statistics is unlikely to be a trivial 

undertaking. 

Whereas an ultimate ontology of fit-for-purpose metrics for behavioral model evaluation cannot be 

provided here (and may be ultimately unattainable), a potentially important first attempt can be made. 

Behavioral models typically aim to predict “states” and “events” (or “actions”). In this taxonomy 

(Mahdavi 2011), events can be system-related (e.g., switching lights on/off) or occupancy-related 

(e.g., entering or leaving a space). States can refer to systems (e.g., position of shades/windows), 

indoor environments (e.g., temperature, illuminance), outdoor environments (e.g., solar radiation), and 

occupants’ presence (i.e., present versus absent).  

The central step in model evaluation is to compare predicted and monitored events and states. From 

the large number of indicators used in previous evaluation studies of occupant behavioral models (as 

well as in studies in related fields such as thermal comfort), two broad categories can be inferred: (i) 

indicators addressing aggregate aspects of the models’ predictions and (ii) indicators addressing the 

interval-by-interval congruence between predictions and measurements. Whereas the first category 

“vertically” aggregates observations and predictions independently before the overall comparison, the 

second category first compares time series data pairs “horizontally” prior to further statistical 

processing (Mahdavi and Tahmasebi 2016b). Illustrative listings of these indicators are provided in 

Figure 6-1. In this framework, indicators that address aggregate traits of the predictions (such as the 

total number of actions, median state durations) are grouped with indicators that address the proximity 

of predicted probability distributions to those of the measured ones (such as the Jensen–Shannon 

divergence) (Fuglede et al, 2004). 
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Figure 6-1: Categories, aggregation structures, and example indicators for occupant behavior 

model evaluation (Mahdavi and Tahmasebi 2016b) 

Superior performance in terms of aggregate indicators is specifically desired in simulation studies 

geared at performance levels over longer periods of time (such as the conventional use of building 

performance simulation models for estimating annual energy demands). However, it can be argued 

that the indicators resulting from an interval-by-interval comparison of predictions and measurements 

are of more interest when short-term performance predictions play a central role (e.g., predictive 

building systems control). 

6.5. Addressing model feedback in evaluation process 

As stated before, the inherent feedback in occupant behavior models with environmentally relevant 

indoor explanatory variables poses a challenge for model evaluation efforts. Specifically, the output of 

behavioral models (for instance, window states) influences the input (for instance, indoor 

temperature). Of course, it is logically impossible to obtain empirical data matching every possible 
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sequence of actions predicted by behavioral models. In this regard, different approaches have been 

adopted to evaluate the predictive performance of occupant behavior models.  

Some model evaluation studies (e.g., Schweiker et al. 2012, Fabi et al. 2015, Wolf et al. 2017) have 

neglected the feedback in occupant behavior models. Hence, the model predictions at each time 

interval do not have any impact on the indoor environmental factors for the next interval. This 

omission can render the validation of behavioral models inconclusive.  

For example, in evaluating a number of stochastic and non-stochastic window operation models, 

Tahmasebi and Mahdavi (2016) showed that running two stochastic models without considering the 

feedback led to a large overestimation of the fraction of time windows were open and the opening 

duration. In real circumstances, opening windows results in the room temperature dropping, which in 

turn causes the windows to be closed. In other words, without considering the model feedback, the 

opening of windows does not reduce the indoor air temperature and is therefore not followed by a 

closing action. In the same study, neglecting the feedback also countered the tendency of single-

threshold non-stochastic models to predict an unrealistically large number of actions. According to 

these models, windows are operated as soon as the temperature falls below or rises above a certain 

threshold, which in reality (including feedback) would result in a large number of opening and closing 

actions.  

Given these circumstances, the use of calibrated building performance models may represent an 

alternative for the evaluation of occupant behavior models (Tahmasebi and Mahdavi 2016). Thereby, 

calibrated building models serve as virtual representations of buildings that can emulate the response 

to the predicted occupant behaviors. The development of highly accurate calibrated building models 

requires extensive input data pertaining to the outdoor environment as well as the physical and 

operational characteristics of the building. 

Other approaches to occupant behavior model evaluation do not require the inclusion of feedback, but 

focus on specific aspects of the model predictions. One method relies on discontinuous model runs. 

Thereby, as opposed to the aforementioned two approaches, the predicted state of the environmental 

control device at each time interval is not inherited in the next time step. Thus, at each time interval, 

the model is fed with the monitored state of the device in addition to the explanatory environmental 

parameters. The predicted state of the device is then compared with the measured state in the next time 

interval. In this scenario, there is no need to include the model feedback. However, this model cannot 

capture the intended continuous behavior in which state predictions for a time step have implications 

for the subsequent intervals. Consequently, this method can only capture the model performance in 

correctly predicting the device states at specific intervals and not the overall performance across time 

frames such as a day or a season. 

Another evaluation approach that does not require feedback uses the predicted action probabilities 

instead of the resulting states or actions (see, for example, Fabi et al. 2015). Thereby, the overall 

performance of the model is derived in terms of the sum of the interval-by-interval differences 

between predicted action probabilities and observed actions. This approach does not require Monte 

Carlo simulations of the model or the inclusion of model feedback. However, the comparative 

interpretation of the cumulative differences derived from this method is not necessarily 
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straightforward. Likewise, the method does not yield specific insights about model performance issues 

such as the state duration of devices or frequency of actions in specific time periods. 

6.6. Case study: evaluation of window operation models 

This section addresses some of the aforementioned considerations based on a specific illustrative case 

study of behavioral models. The material for this case study is taken from a paper that explored the 

reliability of various models pertaining to occupants’ operation of windows for natural ventilation in 

buildings (Tahmasebi and Mahdavi 2016). In the present context, the results are not of particular 

interest in the original narrow sense of model comparison, but the case study allows us to elaborate on 

a number of central model evaluation issues.  

Note that the case study itself has a number of key limitations (e.g., small set of reference empirical 

data from only one location, small number of models considered). One could argue that, strictly 

speaking, models cannot be “validated,” even with large amounts of affirmative evidence. A single 

counter-example, in contrast, would suffice to “falsify” a model. This is not the point of the case 

study. In the domain under discussion (assessment of occupants’ behavioral models), it would be 

unwise to set unrealistically high standards regarding the predictive performance of a model. 

Consequently, the treatment of this case study’s material does not definitively evaluate the selected 

models. For such an objective, neither the original empirical basis upon which those models were 

developed nor the empirical basis we use to examine their performance are sufficient. The case study 

has a different purpose: the structure and embedded procedure of this external evaluation of a number 

of window operation models provide a useful context for addressing a number of the aforementioned 

model evaluation challenges.  

6.6.1. Window operation models selected 

As a case in point, the following external evaluation specifically addresses the performance of window 

operation models. We studied three existing stochastic and three simple non-stochastic models. The 

stochastic models (referred to here as A, B, and C) are derived based on occupant behavior in office 

buildings and are widely referenced in the building performance simulation community. They are all 

Markov-chain-based logistic regression models that estimate the probability of window opening and 

closing actions based on the previous window state and a number of occupancy-related and 

environmental independent variables. 

The non-stochastic models (referred to as D, E, and F) are defined based on simple rules according to 

common practice in building performance simulation tools without the integration of stochastic 

models; for example, models D and F are integrated in EnergyPlus.  

In our study, we also included variations of models A and C (denoted as A* and C*), as the original 

models did not capture a key behavioral feature in the building under study (inhabitants are requested 

not to leave the windows open when they leave the office because of the risk of storm damage). In 

addition, we considered two benchmark pseudo-models (denoted as G and H) whose purpose is to 
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clarify the performance of the selected models. For the sake of clarity, a brief description of the 

aforementioned models is provided below: 

 Model A, developed by Rijal et al. (2007), estimates the probability of opening and closing 

windows based on the outdoor and operative temperatures when the operative temperature is 

outside a dead-band (Comfort temperature ± 2°C). This model is derived based on data obtained 

from 15 office buildings in the UK between March 1996 and September 1997. 

 Model A*, a variation of Model A, always returns a closing action upon the departure of the last 

occupant. 

 Model B, developed by Yun and Steemers (2008), is based on summer data (from June 13 to 

September 15, 2006) obtained from a naturally ventilated office building in the UK without 

nighttime ventilation. It estimates the probability of opening windows upon first arrival and the 

probability of window opening and closing actions within intermediate occupancy intervals (i.e., 

after first arrival and before last departure) based on indoor temperature. 

 Model C, developed by Haldi and Robinson (2009), estimates the probability of opening and 

closing actions at arrival times (first and intermediate ones), intermediate occupancy intervals, and 

departure times (intermediate and last ones) based on a number of occupancy-related and 

environmental independent variables (see Tahmasebi and Mahdavi (2016) for a list of independent 

variables and the original and adjusted estimates of the coefficients used in this study). This model 

was developed based on data obtained from 14 south-facing cellular offices in a building located in 

a suburb of Lausanne, Switzerland, from December 19, 2001, to November 15, 2008. 

 Model C*, a variation of Model C, always returns a closing action upon the departure of the last 

occupant.  

 Model D, a non-stochastic model, operates as follows: windows are opened if the indoor 

temperature is higher than the outdoor temperature and the indoor temperature is higher than 26°C. 

Otherwise, the windows are closed.  

 Model E, a non-stochastic model, can be specified as follows: windows are opened if the indoor 

temperature is higher than the outdoor temperature and higher than 26°C. Windows are closed if 

the indoor temperature is lower than 22°C. 

 Model F, a non-stochastic model, operates as follows: windows are opened if the operative 

temperature is greater than the comfort temperature calculated from the EN15251 adaptive comfort 

model. Following the definition of comfort temperature for a free-running period in EN15251, the 

windows can only be opened if the weighted running average of the previous seven daily average 

outdoor air temperatures is above 10°C and below 30°C.  

 Model G, a benchmark pseudo-model, “predicts” that the windows are always open. 

 Model H, a benchmark pseudo-model, “predicts” that the windows are always closed.  

In the case of the stochastic window operation models, to conduct a comprehensive evaluation, both 

the original and adjusted coefficients of the logistic functions were used. The original coefficients are 

published by the model developers; the adjusted coefficients were obtained by re-fitting the models to 

a separate dataset obtained from the building under study in the calibration period. The models with 

original coefficients are marked with a subscript “O” and those with calibrated coefficients are 

denoted by a subscript “C”. As mentioned before, the latter option (adjusting model coefficients based 

on observations from actual buildings) has no relevance to model deployment scenarios pertaining to 
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building design support, but may be of some interest in operation scenarios of existing buildings. 

Table 6-2 summarizes the model evaluation scenarios. 

The process of model selection and specification of an external evaluation study already highlights 

some of the typical challenges faced by external validation studies of behavioral models. Aside from 

the absence of a prior external validation study, most published models have a limited scope of 

underlying internal validation. Published models are often derived based on limited data—typically 

from a single building—rendering them non-representative in statistical terms (e.g., population, 

climate, building typology). Moreover, even for this limited base, the model documentation typically 

leaves many questions open or includes questionable assumptions (i.e., the assumption that occupants’ 

degree of freedom in operating windows is independent of facility management issues in a typical 

office building). Likewise, hidden assumptions pertaining, for example, to the assumed one-to-one 

relationship between an inhabitant and a window make it difficult for users to judge whether and to 

what extent socially relevant interaction patterns between inhabitants, and the related implications for 

window operation, are captured in the model.  

 

Table 6-2: Studied window operation models and evaluation scenarios 

Model Model type Coefficients 
Adjustment for the absence 

of nighttime ventilation 

Ao    

Bo Stochastic Original No 

Co    

Ao* Stochastic Original Yes 

Co*    

Ac    

Bc Stochastic Calibrated No 

Cc    

Ac* Stochastic Calibrated Yes 

Cc*    

D    

E Non-Stochastic - - 

F    

6.6.2. Empirical data for model calibration and evaluation 

An office area at TU Wien (Vienna, Austria), including an open space with multiple workstations and 

a single-occupancy closed office, was the data source for external model assessment. The focus was on 

seven workstations, at which each occupant has access to one manually operable casement window. 

The occupants’ presence, state of windows, and a number of indoor environment variables (including 

air temperature, humidity, and CO2 concentration) were monitored on a continuous basis. Outdoor 

environmental parameters (including air temperature and precipitation) were also continuously 

monitored via the building’s weather station. For the present study, data at 15-minute intervals over a 

calendar year (referred to as the calibration period) were used to calibrate the coefficients of the 

stochastic window operation models. This option is only of interest if the model deployment scenario 

involves existing buildings (e.g., model use for optimization of building operation). A separate dataset 
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obtained from another calendar year (referred to as the validation period) was used to evaluate the 

predictive performance of the models. 

Note that, in this paradigmatic scenario, efforts were made to satisfy a number of the generic model 

evaluation requirements formulated in previous section. These included, for example, the collection of 

long-term high-resolution data, a rather rigorous data quality check, and separate datasets for 

calibration and model comparison. However, a central problem remains: the data used for model 

evaluation in this case came from only one building and a relatively small number of occupants. This 

circumstance may remain, at least for some time, unavoidable (large repositories of observational data 

from different locations and building types are, while highly desirable, unavailable). This underlines 

the importance of candid and detailed model documentation, as alluded to in the introduction.  

6.6.3. Calibrated simulation model of the office area 

Previous studies on the evaluation of stochastic window operation models (Schweiker et al. 2012, Fabi 

et al. 2015) did not address model feedback. This circumstance represents a special problem in 

behavioral model validation, as the impact of behavioral models’ output (for instance, window states) 

on the models’ input (for instance, indoor temperature) is ignored. Hence, the building’s response to 

behavioral impulses needs to be emulated via calibrated simulation. Therefore, a calibrated simulation 

model offers a platform for evaluating behavioral models in which the output influences the input. 

This necessitates a model that can reliably represent the building’s behavior.  

For the purposes of the present case study, the building model was first subjected to an optimization-

based calibration to adjust the fixed parameters governing the multi-zone airflow simulations (for 

details of the calibration procedure, see Tahmasebi and Mahdavi 2012). Secondly, the monitored data 

pertaining to occupancy, plug loads, use of lights, and operation of the heating system were 

incorporated into the calibrated building model as a set of full-year data streams at 15-minute 

intervals. This dataset was obtained in the validation period. The resulting model, when fed with actual 

window operation data, predicts the hourly indoor temperatures in the validation year with a 

normalized mean bias error of 2.8% and a coefficient of variation of the root-mean-square error of 

4.8%. 

The building simulation model described above served as a platform, and the selected window 

operation models were integrated such that each variation represented the occupants’ interactions with 

windows using the corresponding window model. For each occupant in the building, individual 

occupancy data and zone-level indoor environmental factors were fed into the window operation 

model. That is, at each simulation time-step, the window model was executed separately for each 

occupant. Moreover, a benchmark model was generated using the actual monitoring data obtained in 

the validation period.  

As calibrated building performance simulations for the evaluation of occupant behavior models 

require the deployment of real-year—preferably on-site—weather data, the building model was 

exposed to the outdoor environmental conditions in the validation period. This was accomplished by 

generating a weather data file from the on-site weather station measurements. The measured dataset 
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included outdoor air temperature, air humidity, atmospheric pressure, global horizontal radiation, 

diffuse radiation, wind speed, and wind direction.  

6.6.4. Evaluation scenarios for window operation predictions 

The performance of the window operation models was evaluated in terms of predicting occupants’ 

interactions with windows for a one-year-long validation period. In this period, the models were fed 

with monitored occupancy-related and outdoor environmental data from the same period according to 

their independent variables. The required indoor environmental factors, however, were provided by the 

calibrated building simulation output to include the models’ feedback. Thus. the calibrated building 

performance model simulates the impact of the window operation models’ output on the indoor 

environmental input. 

For the purpose of the current case study, the following indicators were used to evaluate the predictive 

performance of window operation models. The first two indicators in the following list are compared 

interval-by-interval, whereas the others are typically aggregated for comparison: 

 Fraction of correct open state predictions [%]: This is the number of correctly predicted open state 

intervals divided by the total number of open state intervals.  

 Fraction of correct state predictions [%]: This is the number of correctly predicted interval states 

divided by the total number of intervals. 

 Overall fraction of open state [%]: This is the total window opening time divided by the 

observation time.  

 Mean number of actions per day [d
-1

] averaged over the observation time. 

 Median open state duration [h]. 

 Median closed state duration [h]. 

To ensure the robustness, transparency, and integrity of the model evaluation procedure, the selection 

of reliable, expressive, and consistent model performance metrics is indispensable. Future efforts in 

this direction are thus of utmost importance. 

6.6.5. Evaluation results 

To illustrate the performance of the models in terms of the different evaluation indicators, Figure 6- to 

Figure 6-2 show the models’ prediction errors under consideration of their feedback. In these figures, 

the mean value of the Monte Carlo simulations is displayed for the stochastic models. 
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Figure 6-2: Errors of stochastic window operation models with original coefficients and no 

adjustment as well as non-stochastic models in terms of four evaluation statistics  

 

Figure 6-1: Errors of stochastic window operation models with original coefficients and adjusted 

to buildings without nighttime ventilation as well as non-stochastic models in terms of four 

evaluation statistics  
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Figure 6-2: Errors of stochastic window operation models with calibrated coefficients and 

adjusted to buildings without nighttime ventilation as well as non-stochastic models in terms of 

four evaluation statistics  

6.6.6. Evaluation results discussion 

With regard to the application of behavioral models, a fundamental question concerns their ability to 

reproduce empirical observations. Thus, one may first ask whether the models could, in the present 

case, provide acceptable approximations of the observations. Assuming a threshold of ±20% as a 

reasonable benchmark for the relative error of model predictions, it has to be concluded that, without 

adjustments (nighttime ventilation, calibrated coefficients), none of the studied models performs 

satisfactorily (Figure 6-). However, the nighttime ventilation adjustment markedly improves the 

performance of stochastic models Ao* and Co* (Figure 6-3). Furthermore, calibrating the coefficients 

of the stochastic models using observational data significantly improves their predictive performance 

(Figure 6-4).  

As stressed before, this case study is based on a limited set of empirical data obtained from one office 

area. Hence, the findings cannot be extrapolated to the modeling efforts in different contexts. Ongoing 

and future (more extensive) cross-sectional investigations in this area are expected to utilize a larger 

empirical foundation and thus lead to more representative and inclusive model evaluations. 

Specifically, while the calibration of occupant behavior models is not feasible in the majority of 

building performance simulation efforts, similar external validation studies contribute toward a 

repository of coefficients for the use of existing occupant behavior models in different contexts. 
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Aside from these specific case study results regarding the performance of the selected models, it is 

important to highlight a number of observations that are relevant to the model evaluation discussion in 

general: 

 Data. A general problem in both the development and evaluation of behavioral models pertains to 

the paucity of empirical data. For instance, models A and B were based solely on office buildings 

in the UK in summer (15 buildings in the case of model A, 1 in the case of model B), whereas 

model C was based on a single office building in Switzerland. Moreover, the monitoring period for 

data collection was rather limited in the case of model B (four months).  

 Earlier in this report, it was suggested that a sound model evaluation process requires clear and 

detailed model documentation. This condition is often ignored and was not fully met in our case 

study. For instance, in the case of model A, the treatment of nighttime ventilation is not clearly 

described. Likewise, in the case of model C, the parameter included for closing a window upon last 

departure makes the model (with the original coefficients) inapplicable to buildings without 

nighttime ventilation. 

 As suggested previously, model developers should ideally conduct an internal validation via 

separate developmental and evaluative datasets. In the present case study, this was not done for 

models A and B. In the case of model C, the publication introducing the model suggests that a 

“cross-validation” was performed. Note that only the publication related to model C included any 

model validation metrics. However, the types, coverage, scope, and suitability of performance 

metrics for behavioral models remains an open question. 

 Suitable model documentation should include comments on the applicability of the proposed model 

(e.g., with regard to building type, location, climate, deployment scenario). The documentation of 

the models selected for our case study does not contain such comments. 

Overall, the above illustrative external evaluation study underlines a number of challenges in the 

evaluation process of behavioral models. These include the paucity of underlying empirical 

information of sufficient quality and representative nature; shortcomings in model documentation; 

model input requirements that cannot be met in realistic model deployment situations; problems 

associated with model coefficients and their calibration; the lack of a set of comprehensive, adequate, 

and universally accepted model performance metrics; and—last but not least—the problem of 

feedback, i.e., including the impact of the predicted actions on environmentally relevant model input 

variables. 

6.7. Model evaluation conclusions 

Building performance assessment tools and methods can be significantly improved in terms of 

coverage and applicability if they are enriched with high-resolution representations of occupants. 

Many recent model development efforts have explored the potential for detailed mathematical 

formalisms to provide such representations. However, rigorous external evaluation processes are 

needed to ensure the usability and reliability of occupancy-related behavioral models. Given the lack 

of related general procedures and guidelines, we formulated a number of relevant conditions and 

requirements.  
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Furthermore, a demonstrative model evaluation study was presented, involving a number of recently 

proposed window operation models. The main concern was not to highlight the observed deviations 

from reality underlined in this specific case study. Rather, as a paradigmatic model case, the external 

window operation evaluation study offered the opportunity to identify the need for clear 

documentation of the uncertainties associated with existing behavioral models in different deployment 

scenarios and the development of more generally applicable occupancy-related models. Note that 

ongoing and future trends toward more sophisticated behavioral models are likely to accentuate the 

critical need for appropriate model validation techniques and procedures. For instance, current 

approaches are not likely to obtain empirical data that would facilitate a one-to-one comparison 

between model predictions consisting of multi-aspect (i.e., targeting multiple action domains) and 

agent-based (i.e., geared toward individual occupants’ dynamic actions) characteristics.  

The definition and pursuit of rigorous model validation procedures in the behavioral modeling field 

may be seen as work in progress. Thus, both model developers and potential users are advised to be 

careful with regard to the introduction and application of behavioral models pertaining to occupants’ 

actions in buildings. Specifically, statements concerning the validity and overall applicability of 

models in the building delivery process have little credibility without comprehensive empirical 

backing and careful model testing procedures. 
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7. Occupant Behavior Modeling Tools 
and Integration with Building 
Performance Simulation Programs 

Building performance simulation (BPS) programs, e.g., EnergyPlus (USDOE 2017), ESP-r (Hand 

2015), IDA-ICE (EQUA 2017), DeST (Yan et al. 2008), and TRNSYS (2012), are widely applied to 

evaluate the performance of building technologies and energy systems with the aim of reducing energy 

use in buildings and associated greenhouse gas emissions. However, BPS programs usually represent 

occupant behavior, a key driver of building performance, using different approaches (Crawley et al. 

2008) with oversimplified or pre-defined static schedules, or fixed settings and rules. This leads to 

deterministic and homogeneous simulation results that do not fully capture the stochastic nature, 

dynamics, and diversity of occupants’ energy behavior in buildings. One of the objectives of Annex 66 

was to develop a quantitative description and models of occupant behavior in order to analyze, 

evaluate, and understand the impact of occupant behavior on building energy consumption, as well as 

reduce discrepancies between the simulated and measured energy use in buildings. 

This chapter summarizes the main outcomes from three activities conducted under Subtask D: (1) A 

survey of BPS program developers and users was conducted to understand the capabilities and 

limitations of widely-adopted BPS programs in terms of occupant behavior modeling; (2) The 

development and integration of three occupant behavior modeling tools (obXML, obFMU, and the 

Occupancy Simulator) for building performance simulations; and (3) Case studies testing the use of 

co-simulation with occupant behavior functional mockup units (FMUs) and three BPS programs 

(EnergyPlus, ESP-r, and TRNSYS). For more details on the modeling tools, please refer to the cited 

journal articles. 

The developed occupant behavior modeling tools are available free at behavior.lbl.gov and 

occupancysimulator.lbl.gov. These tools will continue to evolve to address user feedback, add new 

features for emerging applications, and be further verified and validated using measured data.  

7.1. Background on occupant behavior modeling in BPS 

programs  

To contribute meaningfully to occupant modeling capabilities in building simulations, it is important 

to understand the currently available functionality. It is known that functionality among BPS tools is 

generally inconsistent (Crawley et al. 2008, Zhou et al. 2014, Zhu et al. 2013), particularly stochastic 

occupant behavior modeling (Hong et al. 2017); it is useful to quantify this issue. To this end, the 

occupant modeling capabilities of a selection of current BPS programs were reviewed. Information 

was gathered and recorded in the form of a questionnaire, strongly differentiating between 

deterministic (or prescribed) and stochastic models. Questions were divided into six modeling 

categories: (i) occupant movement and/or presence, (ii) use of lights, (iii) use of windows, (iv) use of 
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HVAC, (v) other casual gains (e.g., small power), and (vi) any other occupant behavior (e.g., shading). 

The following questions were asked for each of these areas: 

 Does the BPS program include any stochastic model(s) of [modeling category]? 

 If yes, please briefly describe the model(s). 

 If yes, please give up to three references detailing each model.  

 Please briefly describe any deterministic models of [modeling category] included in the BPS tool. 

Please also provide one reference detailing each model and/or its application. 

Data were collected for the following BPS programs: DeST v2.0, DOE-2.1E v124, EnergyPlus v8.3, 

ESP-r v12.3, IDA ICE v4.6, IES-VE 2016, Pleiades + Comfie v3.5.8.1, and TRNSYS 17 v5.3.0. 

Where Subtask D participants were not experienced in the use of these programs (IDA-ICE and IES-

VE), information was sought from other parties with substantial knowledge. This was done to take 

advantage of existing expertise and minimize the possibility of omitting or misunderstanding obscure 

or poorly documented functionality. The full results of this review were reported by Cowie et al. 

(2017). 

It was found that deterministic occupant modeling functionality was fairly consistent among the BPS 

tools studied. Prescribed schedules and rule-based control are generally used to represent building 

occupants and their behavior; for example, schedules of casual gains from occupants are generally 

used, or window opening control based on temperature set-points may be applied. Whilst there are 

minor variations between programs, e.g., some are limited to hourly resolution whilst others can 

handle sub-hourly resolution and some have provision for control in aspects others do not, the input 

requirements and impact of the functionality are broadly similar. 

Table 7-1 provides an overview of the stochastic occupant modeling capabilities in the BPS programs. 

In this table, the term “user-defined” represents functionality or program features that allow users to 

implement bespoke models. For example, programs such as IES-VE and EnergyPlus include 

generalized model input functionality, allowing users to program models through the interface in a 

proprietary language. Others such as IDA-ICE and TRNSYS allow users to integrate models written in 

externally standardized languages into the simulation. Some allow co-simulation with standalone 

external programs. Open source BPS programs give users the ability to program models directly into 

the source code of the program. These methods can all be used to implement both stochastic and 

deterministic occupant behavior models. 
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Table 7-1: Overview of stochastic functionality 

 

Stochastic models or potentially stochastic input capabilities for … 

Program 
Presence / 

movement 

Lighting 

operation 

Window 

operation 

HVAC 

operation 
Others 

DeST Markov chain 
Probabilistic 

control 

Probabilistic 

control 

Probabilistic 

control 
None 

DOE-2.1E User-defined User-defined User-defined User-defined 

Probabilistic 

shading control, 

user-defined 

EnergyPlus User-defined 

Scheduled 

probability, user-

defined 

User-defined User-defined User-defined 

ESP-r 

Probabilistic 

arrival and 

departure, user-

defined 

Probabilistic 

control, user-

defined 

Probabilistic 

control, user-

defined 

User-defined 

Probabilistic fan 

control, user-

defined 

IDA-ICE User-defined User-defined User-defined User-defined User-defined 

IES-VE User-defined User-defined User-defined User-defined User-defined 

Pleiades + 

Comfie  
None None None None None 

TRNSYS User-defined User-defined User-defined User-defined User-defined 

In general, the stochastic representation of occupants is much less ubiquitous than deterministic 

modeling capabilities. There are two broad types of functionality available: 1) defined occupant 

behavior models implemented in the BPS program and 2) features to allow the input of user-defined 

models. 

Half of the programs reviewed include some built-in stochastic modeling capability, but the 

functionality is far from consistent. DOE-2.1E, EnergyPlus, and DeST allow users to define operation 

probabilities, in some cases functions of independent state variables, though the areas in which this is 

applicable varies. ESP-r includes occupant behavior models from the literature with fixed operation 

probabilities. The former approach is more flexible, but requires extra user input; the empirical 

behavior models of the latter approach restrict its applicability. 

The ability to input user-defined models is reasonably widespread (available in six of the eight 

programs), though the means of doing this vary. This variety of languages and input methods 

compromises model portability, and also raises issues of usability. Programming bespoke models or 

co-simulation programs generally requires highly technical skills. If users must learn a new coupling 

standard or programming language for every BPS program they wish to implement a model in, the 

learning curve could become prohibitive to widespread implementation. 

For the purposes of the computational deliverables of Subtask D, a co-simulation approach seems 

appropriate. The results of the survey clarify that there is a need to homogenize and stimulate wider 

uptake of stochastic occupant modeling capabilities. The development of a BPS program-independent 

co-simulation platform could address the former by centralizing functionality, allowing models to be 

implemented within the platform and then applied in a consistent way among different BPS tools. 

However, the usefulness of this is dependent on the ability of BPS programs to co-simulate with this 

platform, which in turn relies on the implementation of a co-simulation standard in as many BPS 
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programs as possible. Such developments could potentially be stimulated by the existence of such a 

co-simulation platform, as this would provide a demonstrable contribution to the functionality of the 

BPS program. Promoting awareness of these developments could therefore contribute significantly to 

their impact.  

7.2. Occupant behavior modeling tools  

Based on the above mentioned observations, a suite of new occupant behavior modeling tools was 

developed under Subtask D of Annex 66 to be used in building performance simulation. The aim of 

these tools is to improve building performance simulation by: (1) providing a standard representation 

of occupant behavior models, enabling the exchange and use of occupant behavior models between 

BPS programs, applications, and users to improve the consistency and comparability of simulation 

results, and (2) generating realistic occupancy schedules. These tools capture the diversity, stochastics, 

and complexity of occupant behavior in buildings to improve the simulation and evaluation of 

behavioral measures, as well as of the impact of occupant behavior on technology performance and 

energy use in buildings. 

7.2.1.  obXML: An occupant behavior XML schema 

obXML (Hong et al. 2015a, Hong et al. 2015b) is an XML schema that standardizes the representation 

and exchange of occupant behavior models for building performance simulations. obXML builds upon 

the Drivers–Needs–Actions–Systems (DNAS) ontology to represent energy-related occupant behavior 

in buildings. Drivers represent the environmental and other context factors that stimulate occupants to 

fulfill a physical, physiological, or psychological need. Needs represent the physical and non-physical 

requirements of occupants that must be met to ensure satisfaction with their environment. Actions are 

the interactions with systems or activities that occupants can perform to achieve environmental 

comfort. Systems refer to the equipment or mechanisms within the building that occupants may 

interact with to restore or maintain environmental comfort. A library of obXML files, representing 

typical occupant behavior in buildings, was developed from the literature (Belafi et al. 2016). These 

obXML files can be exchanged between different BPS programs, different applications, and different 

users. Figure 7-1 shows the four key elements of the obXML schema and their sub-elements. 
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Figure 7-1: Overview of the obXML schema showing the DNAS ontology 

7.2.2.  obFMU: An occupant behavior functional mockup unit 

obFMU (Hong et al. 2016) is a modular software component represented in the form of FMUs, 

enabling its application via co-simulation with BPS programs using the standard functional mockup 

interface. obFMU reads the occupant behavior models represented in obXML and functions as a 

solver. A variety of occupant behavior models are supported by obFMU, including (1) lighting control 

based on occupants’ visual comfort needs and availability of daylight, (2) comfort temperature set-

points, (3) HVAC system control based on occupants’ thermal comfort needs, (4) plug load control 

based on occupancy, and (5) window opening and closing based on indoor and outdoor environmental 

parameters. obFMU has been used with EnergyPlus and ESP-r via co-simulation to improve the 

modeling of occupant behavior. Figure 7-2 shows the workflow of co-simulation using obFMU and 

EnergyPlus. 
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Figure 7-2: Co-simulation workflow of obFMU with EnergyPlus 

7.2.3.  Occupancy Simulator: A web-based occupancy app 

Occupancy Simulator (Chen et al. 2017, Luo et al. 2017) is a web-based application running on 

multiple platforms to simulate occupant presence and movement in buildings. The application can also 

generate sub-hourly occupant schedules for each space and individual occupants in the form of CSV 

files and EnergyPlus IDF files for building performance simulations. Occupancy Simulator uses a 

homogeneous Markov chain model (Wang et al. 2011, Feng et al. 2015) and performs agent-based 

simulations for each occupant. A hierarchical input structure is adopted, building upon the input 

blocks of building type, space type, and occupant type to simplify the input process while allowing 

flexibility for detailed information capturing the diversity of space use and individual occupant 

behavior. Users can choose an individual space or the whole building to see the simulated occupancy 

results. Figure 7-3 shows the software architecture of the Occupancy Simulator. 

 

Figure 7-3: Software architecture of the Occupancy Simulator 

7.3. Integration of occupant behavior modeling tools with BPS 

programs  

Occupant behavior modeling tools can function as stand-alone units or be integrated with BPS 

programs through co-simulation approaches.  
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The Occupancy Simulator can be used as a web application to simulate the presence and movement of 

each individual as an agent through stochastic models, and generate hourly or sub-hourly room-level 

occupant schedules (in CSV format or EnergyPlus IDF format) for building performance simulations. 

The Occupancy Simulator can also function as a stand-alone program by reading user input from an 

obXML file and a simulation configuration file, and then simulating occupant movements and 

generating the occupant schedules. 

obXML files are used by obFMU or directly by BPS programs. In future, obXML could be integrated 

with Building Information Modeling (BIM), e.g., gbXML (2017), which is widely supported by BPS 

programs. 

obFMU works with BPS programs supporting the Functional Mock-up Interface (FMI), e.g., 

EnergyPlus and ESP-r, through two co-simulation approaches: (1) a third-party tool, e.g., BCVTB, 

that manages the co-simulation and data exchange between obFMU and the BPS program (Langevin 

et al. 2015). Lindner et al. (2017) developed a Modelica-based FMU of occupant behavior models, and 

used a Python-coded tool to manage the co-simulation of the FMU with TRNSYS; and (2) the BPS 

program manages the co-simulation with obFMU. The following sections describe the latter co-

simulation approach using obFMU and the BPS programs ESP-r and EnergyPlus.  

7.3.1. ESP-r  

Linking obFMU with ESP-r enables fully automated co-simulation, and the software can be 

downloaded at http://www.esru.strath.ac.uk/Programs/ESP-r.htm. This conforms to the typical master–

slave paradigm adopted by FMI: at each simulation time step, ESP-r calls obFMU and provides inputs 

describing environmental conditions, before receiving outputs describing occupant actions over that 

time step. 

This functionality has been integrated into the interface of the Project Manager of ESP-r (PRJ); Figure 

7-4 shows a screenshot of this interface (graphical X11 version). This interface allows users to specify 

an arbitrary number of FMUs, each with an arbitrary  number of inputs and outputs (subject to data 

structure limits, which can be modified in a header file). 

http://www.esru.strath.ac.uk/Programs/ESP-r.htm
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Figure 7-4: FMI specification in ESP-r 

This linkage was achieved through the use of an external open-source implementation of the FMI 

standard called FMI Library (www.fmi-library.org). FMI Library is written in C, and has been 

interfaced with the predominantly Fortran code of ESP-r. 

7.3.2. EnergyPlus 

EnergyPlus is a powerful BPS program for modeling heating, cooling, lighting, and ventilation 

systems, with obFMU providing the capability to model occupant-based control strategies, which can 

be downloaded at https://energyplus.net/. EnergyPlus can act as the FMU manager (through the group 

of External Interface objects) to allow co-simulation with obFMU. Figure 7-5 shows the data 

exchange between EnergyPlus and obFMU during each simulation time step (from 1–60 min). 

EnergyPlus exports the zone air temperature, zone CO2 concentration, zone daylight illuminance level 

(at the daylight sensor position), outdoor air temperature, and outdoor rain indicator to obFMU. Time-

step calculations are then performed by obFMU to determine the operation schedule for HVAC, 

windows, shade/blind, lighting, and plug load, as well as the thermostat set-point. The occupancy, 

operational, and thermostat set-point schedules are then used by EnergyPlus to simulate the energy 

performance of the building. Tutorial and example files explaining the integration of obFMU with 

EnergyPlus for co-simulation are included in the obFMU application guide (LBNL 2016), which is 

part of the obFMU release package available at behavior.lbl.gov.  

http://www.fmi-library.org/
https://energyplus.net/


  

78 

 

 
Figure 7-5: Data exchange between EnergyPlus and obFMU 

Chen et al. (2017) introduced a new approach to simulating and visualizing energy-related occupant 

behavior in office buildings. They used obFMU to model occupant behavior and analyze the impact on 

building energy use through co-simulation with EnergyPlus, and employed AnyLogic to visualize 

occupants’ movements and their actions on windows, lights, and HVAC systems, as well as the 

simulated energy use at each time step. 

7.3.3. DeST 

DeST is a BPS program that calculates the energy usage and indoor environmental parameters using 

detailed physics-based models, which can be downloaded at https://update.dest.com.cn/. With an 

embedded occupant behavior module, DeST allows users to select occupant behavior models and 

specify their inputs to simulate occupant behavior. Figure 7-6 shows the user interface for setting the 

parameters of occupant behavior models. This occupant behavior module is embedded inside DeST, 

enabling BPS users to combine occupant behavior modeling with BPS and capture the impact of 

occupant behavior on building performance. 
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Figure 7-6: Operating interface of the occupant behavior module in DeST 

DeST creates and uses a Markov chain occupancy movement/presence model (Wang et al. 2011, Feng 

et al. 2015) to realize stochastic functionality. With prescribed schedules of the number of occupants, 

DeST could also implement deterministic functionality. 

To describe the HVAC system, window control, and lighting control stochastically, DeST creates a set 

of probability models based on events or environmental parameters (e.g., the zone air temperature, 

zone CO2 concentration, zone daylight illumination level, outdoor air temperature). This enables the 

operation schedules of HVAC, windows, shades/blinds, and lighting to be determined (Ren et al. 2014, 

Wang et al. 2015, Wang et al. 2016). 

7.3.4. Other integration approaches 

For EnergyPlus, the Energy Management System (EMS) feature is used to describe and model 

occupant behavior. EMS allows users to write custom code that overwrites the EnergyPlus 

calculations in a runtime language without requiring the recompilation of EnergyPlus. Gunay et al. 

(2015) developed EMS scripts to describe 20 occupant behavior models for use with EnergyPlus. 

Using Ruby scripts, O’Brien et al. (2016) developed an OpenStudio library of measures representing 

typical occupant behavior models that can be directly applied to EnergyPlus simulation models.  
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7.4. Case studies testing obFMU in BPS programs 

7.4.1. Case studies objective 

The objective of this activity was to demonstrate the use of the obFMU tool in case studies with BPS 

programs. The available stochastic user behavior models were integrated into case studies in BPS 

programs and co-simulations were performed to define the power and limitations of the newly 

developed tool through utilization in BPS. 

7.4.2. Integration of existing occupant behavior models into obXML 

schema to create obFMUs 

Firstly, the most suitable occupant behavior models for the case study were identified through the 

analysis of published studies. To ensure that effective occupant behavior models could be created from 

the information given in a publication, only those models with clear input and output variables were 

selected. In addition, the underlying mathematics of the occupant behavior model must be stated. To 

implement the selected 31 occupant behavior models into BPS programs, separate obXML files were 

created and a co-simulation with a small case study building was performed in EnergyPlus with 

obFMU. This process was not successful for all selected occupant behavior models. Thus, the 

occupant behavior models were divided into five categories according to their method of integration: 

(1) Integration without alterations; (2) Integration with occupant behavior model modification; (3) 

Integration with obFMU modification; (4) Not working with obFMU; and (5) No feasible input of 

occupant behavior model for BPS.  

A more detailed explanation of the categories is as follows: 

1. Integration without alterations: The occupant behavior model could be integrated into obXML 

without alterations or limitations. 

2. Integration with occupant behavior model modifications: The occupant behavior model could be 

integrated into obXML with some modifications to overcome occupant behavior model limitations. 

These limitations included:  

 Missing decision for a trigger: Generally, occupant behavior models are based on stochastic 

modeling, whereas the BPS program requires a clear decision as a trigger for further 

interaction. Some occupant behavior models do not provide outputs in such a binary form, but 

instead give a probability (Nicol 2001, Haldi and Robinson 2008). Therefore, the BPS modeler 

has to make a decision regarding when a probability is sufficiently high to result in an action 

(e.g., open/close window). One possible method is to compare the probability with a random 

number. 

 Missing a reversal function: Some models do not define how the action should be reversed or 

how long the action lasts. For instance, the function of opening windows in relation to the 

outside temperature is given, but the reverse function of closing windows is not defined. 
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 Additional effort required to obtain occupant behavior inputs: For example, the blind 

model of Haldi and Robinson (2009) was developed from a field study of a building with two 

separated (upper and lower) external blinds. One of the required inputs is the shaded fraction of 

the window, because the blind is not always fully drawn or raised. EnergyPlus cannot simulate 

fractions of the shading device. To implement the model, the modeler would need to divide the 

window into smaller portions. In addition, there are two different probabilities for upper and 

lower blinds, which further complicate the application. Therefore, simplifications are required, 

and these will directly impact the results. 

3. Integration with obFMU modifications: The occupant behavior model could be integrated into 

obXML with some modifications because of obFMU limitations. These limitations included:  

 Missing event type in obXML. Some occupant behavior models (Hunt 1980, Haldi 2013) 

consider events such as the arrival time or the time of absence. As only certain Event Types are 

offered in obXML (“Entering Room;” “Leaving Room for more than 1 hour;” “Leaving Room 

for more than 6 hours”), modifications had to be made. One modification was the 

approximation of an “absence longer than 8 hours” in Haldi (2013) with “Leaving Room for 

more than 6 hours” in obXML. 

4. Limitations of obFMU: The occupant behavior model could not be integrated into the obXML 

because of restrictions in obFMU or obXML. 

 Limited types of mathematical equation: obXML provides different equations to implement 

occupant behavior models, such as constant values, linear, quadratic, logit, probit, or Weibull 

functions. If the occupant behavior model uses another type of mathematical function or 

equation (e.g., Rijal et al. 2008), the model cannot be integrated. 

 Fixed model of occupancy: obXML uses the occupancy model of Wang et al. (2011); the 

inclusion of other occupancy models is currently not possible. 

 Limited types of parameters in obXML: As of June 2017, obXML offers the following 

parameters: Room Air Temperature; Room CO2 Concentration; Outside Dry-Bulb 

Temperature; Room Workplane Daylight Illuminance; Room Lights; Power Density; and Rain 

Indicator (0/1). If an occupant behavior model uses an input parameter other than those listed 

above, such as direct solar irradiance (Reinhart 2004), the model cannot be integrated into 

obXML. 

5. Not feasible input for BPS: The occupant behavior model could not be integrated into obXML 

because integration would not have been feasible. 

 The necessary input variables of occupant behavior models must also be present in the common 

simulation tools. For input variables that can be obtained by field measurements, but not 

without substantial effort using simulation tools, the authors should provide a different way of 

estimating these values. In Page (2007), for example, air pollution based on the applied 

building materials was used to determine the probability of opening a window; this cannot be 

calculated without considerable effort and knowledge of the materials used in the building. 
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Table 7-2: Results of occupant behavior model integration into BPS programs using obFMU 

Occupancy Lighting Window Blinds Set Temp. 

Reinhart (2004) Hunt (1980) Nicol (2001) Newsham (1994) Fanger (1970) 

Wang et al. (2005) Newsham (1994) Rijal et al. (2007) Nicol (2001) Mayer (1998) 

Page et al. (2008) 
Nicol 

(2001) 
Page (2007) Reinhart (2004) 

Humphrey & 

Nicol (2002) 

Wang et al. (2011) 
Reinhart 

(2003) 

Yun, Steemers 

(2008) 

Haldi & Robinson 

(2008) 

Nicol & 

Humphrey (2007) 

Liao et al. (2012) 
 

Rijal et al. (2008) 
Haldi & Robinson 

(2009) 

Langevin 

(2015) 

Chen et al. (2015) 
 

Haldi & Robinson 

(2008) 
Haldi (2013) 

 

  
Yun et al. (2009) 

  

  

Haldi & Robinson 

(2009)   

  
Haldi (2013) 

  

  
Li et al. (2015) 

  

               
No limitations Model limitation obFMU limitation Not working with 

obFMU 

Not feasible or 

meaningful 

Further investigation of the requirements of occupant behavior models for use in BPS programs has 

been reported by Lindner et al. (2017). 

7.4.3. Case study using obFMU in different BPS programs (EnergyPlus, 

ESP-r, TRNSYS) 

While the focus of the previous section was the implementation of each investigated occupant 

behavior model into BPS using obFMU and testing each occupant behavior model in terms of BPS, 

this section discusses composite occupant behavior models (e.g., window + blind + lighting model) 

using obFMUs in three different BPS programs, namely EnergyPlus, ESP-r, and TRNSYS.  

Furthermore, the building of interest is more complex and reflects a real office building in the US. It 

has two above-ground stories with a total conditioned floor area of 1723 m² and includes three 

different room types (office, conference room, and classroom) with a total of 37 zones. Detailed 

information about the case building is given by Sun and Hong (2017a, b).  

The comparison of baseline heating, cooling, and electricity energy loads across the three BPS 

programs showed no significant differences.  

The occupancy schedules for each zone were generated stochastically using the Occupancy Simulator. 

A set of generated occupancy schedules were used in both the baseline and occupant behavior models, 
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whereas the occupant behavior was set differently to enable the evaluation of the impact of occupant 

behavior models:  

 Occupant behavior in baseline model 

The occupant behavior in the baseline model was considered to be deterministic: 

I. Ventilation: The infiltration rate was set to 0.7 ACH; the outdoor air in mechanical ventilation 

is 68 m³/(h∙person) (this building was over-ventilated according to the requirements of 

ASHRAE Standard 62.1). 

II. Blind control: Blinds were controlled based on the total solar radiation on the window facade, 

with a trigger point at1 30 W/m². 

III. Lighting control: deterministic schedule with diversity factors.  

 

 Selection of stochastic occupant behavior models 

Two combinations of occupant behavior models were tested. The models of Yun and Steemers (2008) 

for windows and Newsham (1994) for lighting were considered as simple occupant behavior models 

that require few input parameters and are based on simple equations. In contrast, the complex models 

of Haldi (2013) for window and blind operation and Reinhart and Voss (2003) for lighting require 

multiple parameters for the calculation of probabilities. 

 Results of the case study 

Three research institutes (LBNL, University of Strathclyde, and Fraunhofer) carried out the co-

simulation with the case study using EnergyPlus, ESP-r, and TRNSYS. They answered the following 

five questions: 

1. Integration of obFMUs into BPS programs: How were obFMUs integrated into BPS? 

2. Success of co-simulation: Could the simple and complex obFMUs be integrated successfully? 

3. What challenges were faced during the implementation process? 

4. What was the computation time with the simple/complex obFMUs and without FMUs? 

5. Recommendation: What should users consider in the use of obFMUs? 

The results of this comparison study with BPS programs are summarized in Table 7-3.  

7.4.4. Occupant behavior model integration case study results 

The newly developed obFMU modeling tool provides an environment for co-simulation based on the 

FMI standard. This enables an iterative data exchange between more than two simulation programs. 

The pre-defined obXML files allow BPS modelers to integrate available occupant behavior models 

into a BPS program more easily for the consideration of stochastic user behavior. However, the 

prerequisite for the application of this approach is that the BPS program should support FMI. In 

addition, the computation time with obFMU is longer than without obFMU, and specifying the 

instance names for each parameter in every zone requires dedicated effort. Thus, the process is prone 

to error if not handled carefully, as shown by the case study using TRNSYS. Other limitations include 

lack of integration of non-equation-based models into obFMU, use of a single occupancy model, and 

lack of treatment of interdependent behavior choice hierarchies.  
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Table 7-3: Results of the case study using obFMU in three BPS programs: EnergyPlus, ESP-r, and TRNSYS 

Question EnergyPlus ESP-r TRNSYS 

1. Integration of obFMUs into 

BPS programs: How were 

obFMUs integrated into BPS? 

External interface module in E+ for co-simulation 

obFMU uses input variables from E+ and 

generates output variables to be used in E+ 

Use obXML files to exchange information of 

occupant behavior models 

Define linkage directives through the project 

manager interface. The data required are similar 

to those of the EnergyPlus implementation. 

Export as FMU file in TRNSYS using type 

6139a and type 6139b 

Co-simulation using Python as master–

slave 

2. Success of co-simulation: 

Could the simple and complex 

obFMUs be integrated 

successfully? 

Yes Yes No (see the reason in 3) 

3. What challenges were faced 

during the implementation 

process? 

Debugging of co-simulation, making sure that the 

occupant behavior models are working and 

simulated correctly 

Solving conflicts of occupant behavior models 

with existing settings in BPS 

FMI for co-simulation v.1.0 was integrated into 

ESP-r 

All input/output variables required for co-

simulation with obFMU were programmed into 

ESP-r and made available through the interface. 

It was an iterative development and 

implementation process 

Ensuring consistency with models in other BPS 

tools was difficult in some aspects, due to 

differing functionality. 

At the beginning, obFMU did not provide 

FMI functions to load obFMU into Python 

and is executed using pyFMI library 

(solved now) 

Each parameter needs separate coupling 

with obFMU for every zone, unlike 

EnergyPlus. Connecting individual 

parameters for 37 zones separately is very 

time-intensive. 

Highly susceptible to errors for a TRNSYS-

based building model with large number of 

zones (large number of inputs and outputs). 

4. What was the computation 

time with the simple/complex 

obFMUs and without FMUs? 

Computation time without obFMU: 3 min 

Computation time with obFMU (simple): 17 min 

Computation time with obFMU (complex): 23 min 

Computation time without obFMU: 28 min 

Computation time with obFMU: 41 min 

Computation time without obFMU: 20–25 

min 

Computation time with obFMU only for 1 

zone: 1 h 14 min 

5. Recommendation: What 

should users consider in the 

use of obFMUs? 

Interaction: How the occupant behavior models 

interact with each other and with existing systems 

operation, e.g., window & HVAC operation 

Consistency: all the system operation related to 

occupants should be consistent with the occupancy 

schedule 

Each simulated zone has its own obFMU, for a 

large energy model with many zones, the 

complexity and computational time can be a 

challenge! 

It is important to carefully consider interactions 

among models in obFMU, and also between 

obFMU and ESP-r 

It is critical to read the documentation 

thoroughly and ensure prerequisites are satisfied, 

FMIL does not allow multiple instances 

(generally 1 instance per zone), so each instance 

requires a separate invocation of obFMU – this 

can lead to significant overheads with large 

models. 

Model identifier (instance name) for the 

obFMU should be separately specified for 

each parameter of every zone, otherwise 

fmiInstantiateSlave failure error would 

arise. 

This process is currently time-intensive 

Although TRNSYS and obFMU provide 

the FMI standard, it seems to be practically 

impossible as a normal user to apply this 

approach to large models. 
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7.5. Occupant behavior model integration case study 

conclusions 

The existing BPS programs use various approaches to model occupant behavior in buildings, leading 

to challenges in exchanging the occupant behavior models and comparing simulation results between 

BPS programs. Moreover, occupant behavior models are often over-simplified, leading to simulation 

inaccuracies. There is a strong need to develop and use standardized representations of occupant 

behavior models, as well as ensure interoperable modular implementations of occupant behavior 

models in BPS programs. Subtask D developed and tested new methods and tools to fill these gaps, 

enabling robust integration of occupant behavior modeling in BPS programs to capture the complexity 

and impact of occupant behavior on building performance. 

Occupant behavior models should be used with particular applications in mind. Chapter 8 discusses 

the fit-for-purpose approach to selecting and applying occupant behavior models for building 

performance simulations. In general, when considering modeling occupant behavior, BPS users 

should pay close attention to:  

 Selecting occupant behavior models of suitable complexity (model fidelity and spatial and 

temporal resolution) and usability for a particular application. If needed, occupant behavior models 

should be evaluated in terms of their rational use of metrics and approaches, as discussed in 

Chapter 6. 

 Detailed occupant schedules representing the temporal and spatial diversity of occupants at the 

zone/room level are critical to evaluating occupant-based building technologies and control 

strategies. Homogeneous and static occupant schedules are not adequate to capture the dynamic 

nature and diversity of actual occupant presence and movement in buildings, which can lead to 

significant under- or over-estimation of occupant-based controls. 

 Repeating the simulation to obtain statistically significant results. As most occupant behavior 

models are stochastic and use random number generators, each simulation case (when using 

different seeds to generate random numbers) will provide different results. It is recommended that 

simulations be repeated 10–15 times with stochastic occupant behavior models to ensure a good 

average or mean value, and to conduct 30–50 repetitions to achieve a good variance of results 

(Feng et al. 2016). 

The simulation results given by stochastic occupant behavior models should be presented and 

interpreted from a statistical perspective. This should include an average value as well as a probability 

distribution or range representing the impact of the uncertainty of occupant behavior in reality. 
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8. Applications of Occupant Behavior 
Modeling 

This chapter brings together case studies of building occupant behavior modeling applications from 

around the world. The purpose is to illustrate the range and types of applications, contribute to a 

framework for classifying types of applications, and explore which modeling approaches are most 

appropriate for which contexts. To determine which model is most appropriate for which context, 

three dimensions are particularly important: the stakeholder and their problem (Who? Why?); the 

building type, services, and provisions (What?); and the process stage and relevant tools (When?). 

The case study summaries answer these questions and provide succinct discussions of the adopted 

modeling strategy. The write-ups also include pointers to full publications that provide further details 

for readers who wish to learn more.  

This chapter aims to provide a framework for determining (1) when occupant behavior becomes 

important for making decisions about buildings, (2) which tools are most appropriate for specific 

applications, and (3) what insights emerge from practical experience with these tools. The cases 

summarized in Table 8-1 place these concerns into context.  

 

Table 8-1: Overview of the most common occupant behavior modeling approaches according to 

size, resolution and complexity (Gaetani et al., 2016). 

Simulation 

framework 
Type of model Size Resolution Complexity 

Conventional 

Schedules    

Deterministic    

Non-probabilistic    

Probabilistic/stochasti

c 
   

Agent-based 
Agent-based 

stochastic 
   

The chapter summarizes a set of case studies of modeling occupant behavior in buildings using 

various computational decision support tools. These cases of occupant behavior modeling innovations 

provide a “demand–pull” view, as seen by the users of such tools, to counterbalance the “supply–

push” perspective that many who create such models bring to the subject (Godin 2017).  

Motivation comes from practitioners responding to an international survey who believe occupant 

behavior is a major source of discrepancy between simulated and measured building energy 

performance, and that current modeling practice is quite simplistic (O’Brien et al. 2016). A review of 
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nine current BPS programs by Cowie et al. (2017) identified “a widening gap between knowledge and 

implementation in the field of occupant behavior modeling.”   

The remainder of this chapter considers the cases in which occupant behavior matters, how to support 

decision making in different building project phases (more specifically, how to support decision 

making through modeling and simulation), presents conclusions, and identifies future needs. Case 

study details are available in a separate technical report "Occupant behavior case study sourcebook" 

(ISBN 978-0-9996964-4-6). 

8.1. Framework for determining the impact of occupant 

behavior on building energy performance 

To reduce the gap between the predicted and actual building energy consumption, a better 

understanding of occupant behavior and assessing the impact of occupant behavior on energy use is 

essential. Other subtasks of Annex 66 deal with energy prediction methodologies, occupant behavior 

modeling techniques, and advanced dynamic systems that allow for relatively accurate simulated 

predictions of energy use by integrating advanced user behavior models in energy simulations. 

However, in practice, users may not understand the details of the models and may not use them as 

intended. First, there is a need to select an appropriate tool for the given system design complexity. 

Then, information on the design parameters should be commensurate with the level of detail of the 

model. The characteristics of building energy performance simulation tools that incorporate occupant 

behavior should therefore vary according to application context. Thus, highly complex software tools 

may not be of much use when simple energy use estimations are required. In contrast, for a building 

design phase that calls for detailed modeling, the energy simulations require precise guidelines on 

defining the parameters related to occupant behavior.  

The simulation tools described in the peer-reviewed literature often incorporate considerable 

knowledge and evidence regarding the links between occupant behavior and building energy 

performance. In contrast, modeling practice makes relatively little use of the most advanced tools 

during the design phase because of their complexity and difficulty of use (O’Brien et al. 2016). Many 

practitioners use simplified tools such as rules of thumb or benchmarking for energy usage estimation. 

This suggests there is a need for better understanding of behavioral impacts on energy use in order to 

assess the suitability of certain tools and techniques for different situations. Case studies provide 

preliminary evidence regarding these tools’ fitness for use in specific situations. In certain buildings, 

occupants have more impact on energy use by having direct control over actions leading to energy 

consumption (switching lights and fans on/off, turning thermostat up/down, and window/door opening 

and shading positioning) than they do by merely occupying or being present in a space (Ahn and Park 

2016). This needs to be recognized before the actual modeling takes place. 

The impact of occupant behavior on building energy consumption is often assessed inaccurately, 

which can cause errors, misinterpretation, and distrust of the simulation results (Yan et al., 2016). 

Typically, there is uncertainty when using energy prediction techniques because some factors are 

impossible to predict or cannot be foreseen. Realistic modeling of occupant behavior has only limited 
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feasibility, as each person behaves in a distinctive way and interacts differently with the surrounding 

environment. However, it is important to distinguish the cases in which analyzing occupant behavior 

adds more value, and then demonstrate and quantify the impact of occupant behavior on building 

energy performance. In this way, users can determine which methodology is most suitable for which 

case and which occupant behavior models should be applied.  

Initially defining the building design requirements (what, who, when, why) makes it easier to 

recognize the actual needs and purposes of the building occupant behavior model application. Such a 

categorization strategy can decrease the mismatch between predicted and actual energy use, increase 

the usability of suitable tools (occupant behavior models, energy simulation software), and increase 

confidence in the obtained results. Furthermore, practitioners can acquire a better understanding of the 

impact of occupant behavior on building energy use for different cases (see Figure 8-1).  

 
 

Figure 8-1: Illustration of the driving factors (who, what, why, when) upon which a suitable 

energy modeling technique should be elaborated for each specific case (Gaetani et al. 2016) 

Figure 8-2 illustrates this categorization process. It assembles specific application scenarios from 

contextual factors. In fact, the sensitivity of energy use to occupant behavior is based on different 

factors (building scale, typology, occupant type and presence, time period). This illustrates that 

different levels require different knowledge to predict the energy usage as accurately as possible 

(because occupant behavior is not necessarily the most influential factor).  

The driving factors can be reduced to three effective dimensions that define the main objectives of 

energy modeling: 

• Who and why: Stakeholder and problem; 

• What: Building type, services and provisions; and 

• When: Process stage and tools. 



  

89 

 

This approach helps ensure that the main objectives of the simulations are answered. It stimulates and 

triggers the designer to address the occupant behavior impact and by understanding the occupant 

behavior impact level (high/low) on energy use, the modeler can choose an occupant behavior model 

and energy prediction technique that is the most suitable for that case.   

 
Figure 8-2: Illustration of correlation between the different variations of building scale, building 

typology, occupant type and presence, climate, and time period according to different scenarios: 

national energy standard, energy trends, energy contracting, peak shaving (Polinder et al. 2013) 

 An example from commercial buildings illustrates this approach. As shown in Table 8-2, some 

aspects of office building energy use relate to occupant presence (“occupancy”), whereas others are a 

result of occupant actions (“behavior”). Beyond their mere presence, employees in open-plan offices 

typically have little influence on energy usage, whereas those in private offices have more 

controllable features that they can manipulate, as discussed in Case Study #3 of the report “Occupant 

behavior case study sourcebook” (ISBN 978-0-9996964-4-6). 

 

Table 8-2: Influential occupant behavior parameters in offices 
Interior Design Presence-based Behavior-based 

Open plan office 
Internal heat gains 

Lighting 
Plug-load equipment usage 

Activity-based office 
Internal heat gains 

Lighting 

Equipment usage 

Movement & location 

Cellular (private) offices Internal heat gains 

Manipulation of HVAC, windows, 

shades, lighting 

Plug-load equipment usage 

Figure 8-3 adds an important aspect of the “what” question, i.e. automation. The case studies suggest 

that energy usage in small, manually controlled spaces is highly sensitive to occupant behavior, 

whereas large, automated spaces are only minimally sensitive to occupants’ actions. For different 

building types, the extent to which occupant actions (responding to comfort conditions and using 

equipment or home appliances) will drive energy usage varies. In cases where occupant behavior has 
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a relatively low impact on energy usage, simpler occupant behavior models and energy prediction 

techniques may be sufficient. Hence, it is important to distinguish between different building 

typologies that have different occupancy schedules when selecting appropriate energy usage 

prediction techniques. 

 
Figure 8-3: Influence of occupant behavior on energy demand per occupant versus occupancy 

for different automation levels 

Furthermore, in each different design stage (when), a different level of accuracy is needed to predict 

the energy use. It is important that energy modeling is cost-effective, which implies finding a balance 

between model accuracy and the simulation aims (including allocated timeframe, money expenditure, 

and legal liabilities). However, there is clearly a lower threshold of acceptable accuracy, and this 

should increase as scientific understanding advances. Depending on the scope and goal of energy 

modeling (why), different energy modeling techniques may be most appropriate. During the 

conceptual design process, simple tools should be sufficient, enabling relatively simple estimation of 

energy consumption for a certain building type (residential, non-residential) and archetypal user 

profiles (students, family, elderly). In the final design stages, more time-consuming, expensive, and 

complex software tools should be used to increase the accuracy of energy use predictions. Figure 8-4 

summarizes these relationships.  
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Figure 8-4: Performance gap between energy analysis using traditional and occupant behavior 

enhanced techniques across project phases 

Moreover, depending on the building scale, different levels of complexity are needed. As described by 

Gaetani et al. (2016), a more detailed and complex model is needed when energy usage for a single 

building is assessed (design/retrofit). However, using complex tools is not necessarily justified when 

conducting a simple estimation of energy use for a number of buildings in a residential district. 

Furthermore, larger errors might be obtained from simulations in which the design parameters are not 

adequately defined (instead using the default values) compared to when using simplified methods 

(rule of thumb or benchmarking). For a single building, occupant behavior needs to be more carefully 

modeled, whereas when predicting the energy usage of a certain building district (residential area), 

several other factors will influence the total energy use, and therefore detailed and complex modeling 

of user behavior is not necessarily efficient. Certain occupation profiles and scenarios can be used to 

estimate the representative energy usage of specific building types in a specific area (which can be 

derived from benchmarking results).  

Overall, the modeler should choose and critically justify the model complexity and technique for each 

individually investigated case to ensure that it is fit-for-purpose.  

8.2. How to support decision making in different building 

project phases 

This section defines for each phase in the development of a building project, the key participants and 

decision makers, and the insights about occupant behavior that are most relevant.  

P
e

rf
o

rm
a

n
c
e

 g
a
p

, 
 

M
o

d
e

l 
c

o
m

p
le

x
it

y
 

Time, project phase 

More detailed OB model
Traditional design approach
OB model complexity



  

92 

 

8.2.1. Building project phases, stakeholder involvement, and occupant 

behavior implications 

Since the start of the environmental discussion in the 1970s (Program 1972, Meadows et al. 1972), the 

built environment disciplines have largely attributed improvement potentials to the building fabric and 

building services/systems and their impact on initial and operational energy. This is evident in the 

typical weighting of parameters in building performance-rating schemes such as LEED, BREEAM, 

DGNB, and Greenstar. The past decade has seen a broadening of scope that has recognized building 

occupants as operators of the building fabric and building systems, which implies both direct and 

indirect responsibility for the resulting greenhouse gas emissions. To evaluate the impact of this more 

holistic view of building operation on the built environment professions, it is important to consider 

how these professions commonly operate.  

In most countries, professional bodies propose subdivisions of the building process into separate 

stages to clarify responsibilities, deliverables, liabilities, and fee structures, and to provide templates 

and models. The guidelines should offer a clear template for the scope of professionals’ work through 

the different phases of a typical commission: early design, developed design, construction, handover 

and operation, retrofit. Every board of professionals generally adopts such guidelines. 

Table 8-3 provides an overview of the different project stages, as defined by official documents of the 

Royal British Institute of Architects, the American Institute of Architects, the Australian Institute of 

Architects, the FIDIC (Federation Internationale des Ingenieurs-Conseil), and the German Fee 

Schedule for Architects and Engineers HOAI (Honorarordnung für Architekten und Ingenieure). It is 

evident that the overall content of a building process is similar in all countries, and is likely to be 

similar in countries not listed in the table. However, what appears to be country-specific is the way in 

which the overall building process is subdivided into different project phases and the relationships 

between different stakeholders. This is likely to be due to differences in country-specific building 

culture, legal, and educational systems (Guy 2000, BDA document 2011). For the purpose of 

simplification and applicability in countries not mentioned in the table, the final column suggests how 

the different country-specific project stages can be summarized into four main phases. These phases 

have been established with regard to their relevance to different aspects of occupant behavior in 

buildings.  

The early design phase describes the part of the building process where the written or orally presented 

design brief is analyzed and translated into a visual “design narrative” in sketch format, capturing the 

essential characteristics of the proposed building. Depending on the specific project, parameters such 

as the degree of open vs. closed, indoor vs. outdoor, transparent vs. opaque, light vs. heavy, 

complexity of building management systems, ventilation type (e.g., natural, mechanical, hybrid 

ventilation) and HVAC strategies may be determined at this stage. These parameters have sufficient 

accuracy to describe the character and aspirations of the project, but are often not to scale, their 

dimensions are not determined, and systems and their functionality are not defined (Roetzel 2015). 

Once these qualitative decisions have been made, the following phase of “developed design” 

elaborates the sketch design into a set of construction drawings that can be provided to the builder, 

with detailed specifications about dimensions, materials and functionality of systems and controls 

(Roetzel 2015). The following construction phase then turns the set of drawings into the physical 
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building. This is followed by the final phase, where the built environment professions such as 

architects are commonly involved in the handover and operation of the building. In many countries, 

architects and structural engineers remain liable for 30 years or more, but they are not generally 

involved in the operational phase and rarely receive feedback, such as from post-occupancy 

evaluations. Occupant behavior necessarily remains a set of assumptions during the design phases, but 

it is possible to elicit occupant concerns early on and measure occupant behavior during the 

operational phase of a building’s lifecycle.  
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Table 8-3: Sequential stages of a building’s design process 
Stages from 

first to last in 

sequence 

Royal Institute of 

British Architects 

(RIBA) 

Australian Institute of 

Architects (AIA) 

American 

Institute of 

Architects (AIA) 

Federation Internationale 

des Ingenieurs-Conseil 

(FIDIC) 

Honorarordnung für 

Architekten und 

Ingenieure (HOAI) 

Simplified 

summary of 

stages 

1 Strategic definition 
Development of Design 

Brief 

Schematic design 

phase 

Scoping of Services 

Definition & Scope of Work 

Early Design 

2 
Preparation and 

brief 
Pre-Design 

3 Concept design 

Design phase (analysis of 

the brief and sketch 

design) 

Design 

Development 

phase 

Schematic Design Concept Design 

Developed Design Preliminary Design 

4 Developed design 

Design development, 

documentation and 

building approvals 

Construction 

document phase 

Construction Documentation Building Warrant Drawing 

Developed 

design 

Building Permission 

Application 
Detailed Design 

5 Technical design 
Bid or negotiation 

phase 
Procurement 

Preparation of Tenders 

Tender Analysis 

6 Construction 
Construction 

 
Construction phase 

Construction 

 

Site Inspection & Work 

Supervision 
Construction 

7 
Handover and 

Close out  

Defects liability period 

 

Administration & 

Documentation – Work 

Completion 
Handover and 

operation 

8 In use  
Post Construction 

 
- 

9 Retrofit - - - - Retrofit 
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8.2.2. Participants in each phase  

In Table 8-4, the stakeholder involvement at different phases of a building construction project is 

summarized. While the involvement of different stakeholders in different project phases can vary 

depending on the project and country-specific requirements, building occupants are generally only 

consulted in operational phases (as they are often unknown in earlier phases). Rather than settle for no 

occupant involvement before the operational phase, deeper involvement may be an advantageous 

strategy.  

 

Table 8-4: Typical stakeholder involvement in a building construction project 
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Early Design   X X X X X  (X) X ? 

Developed design   X X X X X  (X) X  

Construction   X X (X) X  X (X) X  

Handover and operation X X X X (X)     X  

Retrofit   X X      X  

8.2.3. Occupant and user involvement in the design process 

Building users play a critical, but poorly understood and often overlooked, role in the built environment. 

There are good reasons to introduce the occupants’ perspective into the building design process. Janda 

(2011) argues that, to reach this goal, design teams need to develop their professional expertise to 

improve buildings and seek ways of integrating user involvement in building performance.  

As each building project differs in terms of occupants, users, and other stakeholders, it makes sense to 

apply a tailored occupant participation and engagement method. According to the European Project 

(NewTrend 2017), the aspects influencing the depth and breadth of participation are the building function, 

building characteristics, project objectives, project scale, technical characteristics, timescale, budget, 

client relation to occupants and users, client characteristics, design team characteristics, building 

occupancy, building use, continuity of occupancy/use, tenure, commitment to building, socio-economic 

characteristics, capacity for collective action, history of occupant engagement, knowledge of building, 

and financial investment.  
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The level of occupant involvement should be decided first, based on the scope and aim of the project. An 

appropriate set of methods and tools should then be chosen to define an occupant and user involvement 

concept. These methods include: 

 online forum (social media) 

 surveys 

 focus group discussions 

 interviews 

 public forums – open days 

 consensus conference 

 post-occupancy workshops, and others 

Design teams can elicit essential feedback and input data from these methods to support and enhance the 

building design, achieve energy-efficient operation, and fulfill occupants’ needs. 

8.2.4. Occupant behavior inputs needed in each phase 

To establish how to support decision making around the impact of OB, in each design phase, it is helpful 

to identify the key stakeholders, major decisions to be made, and impacts of these decisions on occupant 

behavior. Table 8-5 uses the project phases established in Table 8-2 and summarizes the stakeholders 

related to each phase, as derived from the description of responsibilities given by the different 

architectural bodies. In addition, the types of decisions made at each stage and how they are likely to have 

an impact on occupant behavior are identified. The case studies in the appendix contain several lessons to 

be learned in each project phase.  

 

Table 8-5: Stakeholders and decisions made in four main design phases 

Phase 
Main stakeholders 

involved 

Key decisions 

made 
Impact of decisions on occupant behavior 

Early Design 

Client Budget 
Predefines all other parameters, excludes options that exceed 

budget 

Architect and client 

Design narrative, 

attitude and 

atmosphere 

Basic volumetric and spatial characteristics, e.g., degree of 

open vs. closed, indoor vs. outdoor, transparent vs. opaque, 

light vs. heavy. Predefines thermal properties of the building 

envelope, magnitude of solar heat gains and façade 

properties. 

Architect and client, 

specialist consultants 

Basic volumetric 

geometry (building 

depth and height) 

Predefines potential for cross and stack ventilation, 

predefines percentage of building that can be lit by daylight 

(indirect impact on lighting control) 

Architect and client, 

monitoring agents 

Spatial 

relationships 

Predefines size of spaces and their location with respect to 

others. Predefines system dimensioning and control 

opportunities as well as group dynamics around the use of 

building controls 

Developed 

design 

Architect, client, 

builder, building 

authorities (permits), 

monitoring agents, 

building services 

engineers and 

specialist consultants 

Building services 

systems 

(ventilation, 

heating, cooling, 

lighting systems) 

Predefines use of controls 

Building services 

controls 
Predefines use of controls 
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(complexity, 

accessibility) 

Façade typology, 

window opening 

type 

Predefines availability and use of natural ventilation 

Shading systems Predefines control of shading 

Interior fit-out 

(material and 

acoustic properties) 

Predefines space usage 

Construction 
Architect, builder, 

monitoring agents 

Adherence to the 

design and quality 

of construction 

n/a as all decisions 

are specified in the 

previous phase 

Continuous commissioning, effects of changes made during 

the construction phase 

 

Handover and 

Operation 

Building operator, 

building occupants 

Type and use of 

office equipment 

Predefines internal heat loads, indirectly influences use of 

conditioning systems 

Facilities manager, 

building operator, 

monitoring agents 

State of systems 

maintenance 

As-built conditions, predefines IAQ and use of systems and 

controls 

Facilities manager, 

building operator 
Type of systems Predefines IAQ and use of systems and controls 

Building occupants Group dynamics Influences occupant interaction and use of controls 

Building occupants Personal attitude Influences occupant interaction and use of controls 

Building operator, 

building occupants 

Furnishing and 

occupant density 

Influences the number of occupants who have access to 

control systems 

8.3. Supporting decision-making through modeling and simulation 

8.3.1. Fit-for-purpose occupant behavior modeling and simulation in 

building design, control, operation, retrofit, equipment and policy 

Occupant behavior is an important source of uncertainty when dealing with building performance 

simulation (BPS) (Clevenger and Haymaker, 2006, Hoes et al., 2009). For this reason, an increasing 

number of models is appearing in literature to attempt modeling occupant behavior in a more realistic 

manner. Such models can be classified according to their complexity – here defined as in (Zeigler and 

Oren, 1979) as the amount of detail in a model, which in turn results from its size and resolution. At the 

lowest spectrum of complexity are the diversity factors – or schedules –: hourly fractions from 0 to 1 

which are multiplied for a maximum amount of e.g. heat gains due to people, equipment, lighting, etc. 

Schedules are commonly employed to represent occupant presence and occupant behavior in BPS tools, 

due to their ease of use and to the incentives from the building code (Yan et al., 2015). However, it is 

argued that they are not representative of actual occupant behavior, which is typically stochastic and 

influenced by a high number of variables. Moreover, schedules neglect occupants’ diversity (O’Brien et 

al., 2017b). For this reason, researchers developed non-probabilistic, probabilistic, and agent-based 

models, which are supposed to give a more accurate representation of people’s behavior (Gaetani et al., 

2016, Gunay et al., 2013), contain a review of the available modeling frameworks and to discuss their 

advantages and drawbacks. 
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It is important to note that uncertainties in BPS tools have a varied importance, according to the aim of 

the simulation. For example, a cumulative number of hours of equipment use over the year may be 

sufficient to evaluate a building’s yearly energy use, while it is not if the aim of the simulation is to 

investigate onsite-energy-matching strategies. As a consequence, the required confidence in the prediction 

depends on the aim of the simulation. Moreover, different buildings and performance indicators are 

affected in a diverse manner by the various aspects of occupant behavior: some cases are extremely 

sensitive to the way a particular aspect is modeled, while others may be barely affected. An overview of 

comparative studies aiming at identifying the best performing model among models of different 

complexities is given in Table 8-6, which shows how different studies identified different models as 

having the best predictive ability. This conclusion is in line with the assumption that different modeling 

complexities are appropriate for different cases. 

In this context, it is apparent how choosing the most suitable model for each aspect of occupant behavior 

for a given case is a complex task. Annex 66 contributed to providing guidelines to support BPS users in 

this task by means of the fit-for-purpose occupant behavior modeling (FFP-OBm) strategy (Gaetani et al., 

2017a). The strategy is based on the conviction that goodness-of-fit should not be the only method to 

compare models. Instead, in order to guarantee generalizability to other datasets, fit-for-purpose is 

deemed a valid indicator. A fit-for-purpose model is good enough to do the job it was designed to do 

(http://www.macmillandictionary.com/dictionary/british/fit-for-purpose.). The FFP-OBm strategy is 

based on two main concepts: i) there is a trade-off between abstraction error and input uncertainty when 

increasing the modeling complexity (i.e., more complex models do not necessarily yield better results), 

and ii) the modeling complexity for each aspect of occupant behavior should depend on its impact on the 

results – there is no sense of increasing modeling complexity of an occupant behavior aspect that has been 

proven trivial. The first concept is included in the strategy as an uncertainty analysis which allows to 

filter-out modeling complexities according to the phase in the building lifecycle. The second concept – 

based on the notion of building robustness to occupant behavior (Hoes et al., 2009) – is integrated with a 

sensitivity analysis using the statistical Mann-Whitney U test. Figure 8-5 illustrates the FFP-OBm 

strategy. 
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Table 8-6: Comparative studies identifying best performing occupant behavior model among different complexity models (Gaetani et al., 2016) 

   

Models considered for comparison  

 = best performing model(s),  = other considered 

model(s) 

Author(s) year [Ref.] Type of behavior 

Aim of simulation; 

performance indicator; 

building typology  

Schedule

s 

Non-

probabilisti

c 

Probabilistic 
Agent-

based 

Mahdavi and Tahmasebi 

(Mahdavi and 

Tahmasebi, 2015)  

Occupancy Systems control; daily 

occupancy profile; (single, 

semi-closed, open-plan) office 

    

Tahmasebi et al. 

(Tahmasebi et al., 2015) 

Occupancy, 

lighting and plug-

loads 

Annual and peak energy 

demand for heating and 

cooling; office 

    

Tahmasebi and Mahdavi 

(Tahmasebi and 

Mahdavi, 2017) 

Occupancy Annual and peak energy 

demand for heating and 

cooling; office 

  

(energy PIs) 
  

(presence 

distribution and 

peak values) 

 

Duarte et al. (Duarte et 

al., 2013) 

Occupancy Daily occupancy profile; 

(single, open-plan) office 
    

D’Oca et al. (D’Oca et 

al., 2014) 

Window opening 

and thermostat 

adjustment 

Design; energy demand for 

heating; household     

Langevin et al. 

(Langevin et al., 2014) 

User behavior Energy demand and thermal 

acceptability; office  
    

Chapman et al. 

(Chapman et al., 2014) 

User behavior Design; energy demand; office 

and household 
    

Azar and Menassa (Azar 

and Menassa, 2010) 

Blinds regulation, 

lighting/ 

equipment, DHW 

Electric/gas demand; 

university     

Yamaguchi et al. 

(Yamaguchi et al., 2012) 

User behavior Behavior duration, start/end 

time, number of transitions, 

probability distribution, 

number of different patterns 

  

  
(behavior 

duration, 

transitions) 

  
(variety of 

behavior 

patterns) 
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8.3.2. FFP-OBm strategy 

 
Figure 8-5: FFP-OBm strategy step-by-step 

All the steps of the FFP-OBm are explained in detail in “Occupant behavior modelling approaches and 

evaluation” (ISBN 978-0-9996964-1-5). In the following section, a case study is presented to illustrate 

how increasing modeling complexity of trivial occupant behavior aspects proved to be an unnecessary 

time/resources expenditure. 



  

    101 

 

8.3.3. Case study: increasing modeling complexity of trivial occupant 

behavior aspects 

A testbed of 16 different cubicle office variants was modeled in EnergyPlus v8.3 (Gaetani et al., 2017b). 

In order to investigate a variety of cases, two climates, two window-to-wall ratios, two power densities 

(lights and equipment) and two building constructions were defined (Occupant behavior case study 

sourcebook, ISBN 978-0-9996964-4-6). The Mann-Whitney U test was employed to conclude whether 

cooling energy, heating energy, and weighted overheating hours (WOH) were affected by occupants’ 

presence, HVAC use, heating and cooling setpoint, use of lights, equipment, windows and blinds. In this 

report, only the effect of use of lights, windows and blinds on the cooling energy of two building variants 

(Variant A and Variant B) is considered. The Mann-Whitney U test showed that the cooling energy of 

Variant A is affected by lights use, while the cooling energy of Variant B is affected by blinds and 

windows use. Widely used stochastic models (Haldi and Robinson, 2009, Haldi and Robinson, 2010, 

Reinhart, 2004) were employed to test the effect of increasing modeling complexity for lights, windows 

and blinds use in both cases. The results are reported in Figure 8-6 and Figure 8-7. Generally, it can be 

noted how applying higher complexity models to trivial aspects of occupant behavior leads to negligible 

effects in the results. For example, in figure 8-6, the cooling energy consumption is more sensitive to 

lights use, while as for figure 8-7, it is more sensitive to blind use. 

 
Figure 8-6: Effect of implementing stochastic models for lighting (L), blind (B) and window (W) use 

on the cooling energy of building Variant A (sensitive to lights use) (Gaetani et al., 2017b) 
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Figure 8-7: Effect of implementing stochastic models for lighting (L), blind (B) and window (W) use 

on the cooling energy of building Variant B (sensitive to windows and blinds use) (Gaetani et al., 

2017b) 

In conclusion, the appropriate application of occupant behavior model depends on a number of factors; 

the FFP-OBm strategy attempts at offering guidelines for the BPS user to achieve efficient, informed 

decision-making and ensure the required level of confidence in the prediction. A simple case study 

proved the validity of the FFP-OBm strategy assumption that the modeling complexity for each aspect of 

occupant behavior should depend on its impact on the results. 

An issue which emerges when using higher complexity, stochastic models, is how to deal with the 

presentation and deployment of results with various modeling techniques. This topic is the core of the 

following section. 

8.3.4. Presentation and deployment of results from different modeling 

techniques 

A parametric study was performed for a generic perimeter office space in Ottawa, Canada to identify how 

different occupant behavior modeling approaches affect predicted energy use and comfort and how these 

approaches may influence design decisions (Gilani et al., 2016). In particular, the impact of conventional 

and probabilistic occupant modeling approaches on daylight and energy performance in the design 

process were evaluated. Generally speaking, conventional occupant modeling failed to capture the 

influence of building design over occupants’ behavior, and vice versa. The static and stochastic occupant 

behavior modeling approaches yielded different optimal design regarding energy consumption. For 

instance, WWR 60% and 40% generally yielded the lowest lighting electricity use with the static and 

stochastic cases, respectively (Figure 8-8). Figure 8-8 also explores a representation of uncertainty using 

error bars. The results of this study necessitate more advanced occupant behavior models as requirements 
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for code compliance modeling to prevent the two risks associated with the use of conventional occupant 

models: inaccurately predicted building performance and sub-optimal designs. 

 
Figure 8-8. Annual lighting electricity use under static and stochastic occupant behavior modeling 

for: (a) Design option 1 (baseline design), (b) Design option 2 (window type), and (c) Design option 3 

(blind transmittance). 

8.4. Occupant behavior modeling conclusions and future needs 

This chapter has shared insights from a rich set of case studies of occupant behavior analysis and energy 

modeling in buildings. The case studies summarized in the appendix provide a wealth of illustrations of 

occupant behavior modeling applications. Table 8-7 provides an overview of the case studies.  

 

Table 8-7: Overview of occupant behavior modeling case studies 
Timeframe   2009-2017 

Where  USA (12), Europe (8), China (8), Rest of Asia (4) 

Building types  Office (20), residential (8), government (2), laboratory (1), school (1) 

Building size Large (0), medium (15), small (17) 

Owner type Public (10), private (13), government (7), university (2) 

Occupant type Office workers (22), residents (8), students (2) 

The key findings of this chapter include: 

 The amount of influence that occupant behavior has on building energy consumption varies according 

to the degree of automation, interior layout and personalization of spaces, the relation between internal 

and external thermal loads, and occupant schedules, plus numerous less-important factors. Designers 

should understand the approximate relative importance for their project before investing in detailed 

analysis.  

 The degree of precision regarding occupant influences on energy consumption varies significantly 

over the phases of a building’s life, spanning early design, developed design, construction, operation, 

and retrofit. This should inform the selection of tools for incorporating occupant behavior insights, and 

guide a preference for simple rather than complex tools when feasible.  

 By answering “who,” “what,” “why,” “when,” and “where” questions, analysts can better select the 

most appropriate occupant behavior modeling tools for each specific application.  

 Increasing modeling complexity of non-influential OB aspects does not lead to improved results, but 

involves an unnecessary time expenditure. 
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 The selection of appropriate modeling complexity for the case at hand is a complex function of the 

purpose of the simulation and of the building case. The FFP-OBm complexity attempts to provide a 

framework for such selection. 

More work is needed on several topics, including the following. 

A complete framework for classifying applications of occupant behavior modeling 

The chapter begins the development of a framework for classifying applications of occupant behavior 

modeling. This is an important and ongoing task. A better framework will allow users to match models to 

applications more effectively, achieving a “fit for purpose” modeling standard.  

Changing occupant and operator behavior in existing buildings 

Encouraging behavior changes can help achieve significant reductions in energy consumption within 

buildings. This brings the need for both hardware and software provisions to influence behavior. 

Hardware provisions refer to technologies that help occupants and operators to make adjustments in 

temperature settings, operation of windows and blinds, and optimization of central air-conditioning plants. 

Software includes programs to encourage cultural changes, awareness, information regarding energy 

performance, and efforts to enhance occupant and operator knowledge. Three case studies (Occupant 

behavior case study sourcebook, ISBN 978-0-9996964-4-6) demonstrate these effects and highlight the 

value for further research on the combinations of hardware and software that would be most effective in 

bringing changes to the behavior and practices of the occupiers or operators of buildings.  

Need for a design guideline on occupant behavior in buildings 

The value of occupants has increased over the past decades, transitioning from workers in an ‘office 

factory’ to highly valued staff whose health and well-being at the workplace is crucial to employers 

(Roetzel et al. 2010). This tendency is clearly displayed in the recent emergence of certification systems 

that assess health and well-being of occupants in buildings, such as the WELL Building Standard 

(http://standard.wellcertified.com/).  

Designers are generally not yet equipped with specific knowledge on the environmental and comfort 

implications of occupant behavior. In Annex 66, the behavioral patterns of people have been investigated 

and modeled and a considerable amount of knowledge has been assembled about the relationship and 

interactions between buildings, interior spaces, and people.  

Mechanical and electrical systems, window structures, shading devices, and whole facades should be 

designed in to account for the usability and actual usage patterns of occupants. One of the key parameters 

of large office building developments is the occupant density in the office spaces. Occupancy research 

conducted as part of Annex 66 could help designers to calculate expected real occupancy and internal 

heat gains for their design, instead of or alongside the rule-of-thumb of design standards. Many other 

design parameters predefine occupant behavior through control zone sizes, thermostat locations, and 

usability. 
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Therefore, we argue that there is a need for a design guideline for built environment professionals that 

specify the environmental implications of occupant behavior in buildings. In the future, outcomes of the 

field of energy-related occupant behavior research could greatly enhance the design process in practice. 

Supporting decision making through monitoring, modeling, and simulation 

Monitoring of occupant behavior in existing buildings provides data for calibrating both design and 

operations models. Modelers can choose appropriate strategies based on the building lifecycle phase and 

the associated profiles drawn from an inventory. These associated profiles present similar building and 

occupant profiles, and have a similar occupant behavior effect. Through statistical analysis, it becomes 

possible to create different diversity profiles for different categories (such as type of occupants, type of 

building) for each specific development (design) stage. In general, such an inventory helps analysts to 

choose the most appropriate modeling technique (appropriate level of complexity in occupant behavior 

modeling) and allows a basic determination of the correlation between the occupants and energy usage. 

For example, Samuelson et al. (2016) showed that calibration can substantially reduce errors relative to 

the incremental cost of performing careful calibration. Similarly, D’Oca et al. (2015) highlighted the 

potential for knowledge discovery in databases to create an occupancy schedule learning framework.  

Determining the impact of occupant behavior on energy use alone is not enough. It is also important that 

such information be provided to the occupants so that they understand how their behavior affects the 

building’s energy consumption. This allows them to increase their awareness and may trigger more 

energy-efficient behavior.  

Need for investigation of qualitative influences on occupant behavior in buildings 

As indicated in Table 8-4, the operational phase is characterized by a number of influences that are 

subjective in nature (Roetzel and Chen 2016). Social and organizational norms (e.g., sustainability 

policies at the company level) can influence the way a building is operated (Chen and Knight 2014, Cui et 

al. 2017). Individual attitudes towards energy savings are situated in this social and organizational context 

and can influence the individual use of controls. Perceived behavioral control, group dynamics, subjective 

norms, and perceived spatial hierarchy influence whether controls that are physically or technically 

available to occupants are actually used as intended. This may not be the case if the operation of controls 

is, in the perception of individual occupants, associated with a degree of social discomfort. In addition, 

the quality of maintenance can influence the long-term functionality of available controls. While Annex 

66 has focused on quantitative influences on occupant behavior, the investigation of qualitative influences 

provides an interesting field for future research.  

In conclusion, applications of occupant behavior modeling are increasing and it is important to focus on 

how well the available tools match specific applications. The value of these tools increases when matched 

to appropriate phases in the building’s lifecycle and to specific cases in which occupant behavior matters 

to outcomes. The applications summarized in the attached case studies show that there is much more to 

mine in this rich vein.  

  



  

    106 

 

9. Interdisciplinary Approaches to 
Studying Occupant Behavior 

The issue of occupant behavior and its impact on building energy use is a highly complex problem that is 

not influenced by technology-driven measures or technologies alone. Researchers in Annex 66 activities 

argue that achieving global energy efficiency and carbon reduction goals in the building sector require an 

interdisciplinary understanding of the “human dimensions” of building energy use.  

In this context, Annex 66 proposed a research agenda integrating occupant behavior within an 

interdisciplinary approach that combines insights from the technical, analytical, and social dimensions of 

building energy use. Research under Annex 66 activities aims to establish methodologies, case studies, an 

innovative research framework, and tools to support researchers in the interdisciplinary fields of building, 

social, and data sciences, to better understand and quantify the influence of occupant behavior on building 

energy performance.  

This chapter summarizes the main activities, outcomes and findings from interdisciplinary research under 

Annex 66, including: (1) the needs and approaches of interdisciplinary research, (2) a review of occupant 

behavior survey studies, (3) the integrated occupant behavior framework and cross-country occupant 

behavior survey, and (4) the challenges of interdisciplinary occupant behavior research. 

9.1. Needs and Approaches for Interdisciplinary Theories of 

Human Behavior 

The problem of understanding occupant behavior in buildings, and the associated energy outcomes, is 

very complex and requires the integration of perspectives from multiple disciplines. Therefore, an 

interdisciplinary process that encourages the integration of research, theories, and methodologies from 

multiple disciplines is needed. However, this type of research can be extremely difficult because of 

discrepancies in methodological and epistemological views, as each discipline has its own set of 

assumptions, theories, and worldviews that inform selected research designs. As stated by Repko (2008, 

p. 104) “The methods a discipline favors correspond to the theories it embraces.” One of the challenges to 

interdisciplinary research is the need to blend varying methods and research tactics to better understand 

the problem. In Annex 66, theoretical frameworks and behavioral science theories from social sciences 

were leveraged to understand occupant behavior in buildings, and research tactics and methodologies 

from other disciplines—especially engineering and architecture—were used to gather data. The blending 

of disciplines was challenging, but ultimately, appropriate methodologies and approaches were used and 

integrated throughout the research period.  

Interdisciplinary research is essential for educating and informing building designers, engineers, social 

scientists, and policy makers on the multifaceted dimensions of designing and building energy-efficient 

systems and networks (Editors of Nature 2015). Interdisciplinary research links two or more distinct 
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scientific fields in an integrative way that combines the fields’ frameworks, study designs, and 

methodologies to create a homogeneous perspective and pursue complex problems (Stephenson 2017).  

Innovation in research and development is established around the understanding of the socio-technical 

link between building occupants’ behavior and the use of building technologies, energy services, and 

controls. This interdisciplinary approach can be described as a two-way exchange of knowledge from 

socio-technical disciplines of science, in which:  

“sociologists can provide more insight into macro-level factors that shape […] energy use. Also, 

input from environmental scientists can be of valuable importance to further improve intervention 

studies. The environmental sciences can help translate energy-related behaviors […] into their 

environmental impact, e.g., in terms of CO2 emissions, and help select high-impact behaviors” 

(Abrahamse and Steg 2011). 

Advances in interdisciplinary research have emerged through the integration of the relevant frameworks, 

and have been used to better understand human–building interactions in terms of both the building 

physics and social sciences. Research by Allison (1969), Axsen and Kurani (2012), Ryghaug and 

Toftaker (2014), Sheller and Urry (2016), and Sovacool (2017) confirms that, while disciplinary theories 

contribute important understandings of behavioral phenomena, blending aspects of interdisciplinary 

theories can provide additional interpretations and insights. In this picture, further research integrating 

multiple theories, comprehensively describing the energy-relevant human–building interactions in office 

buildings based on the knowledge of interdisciplinary fields, will provide beneficial data. A conceptual 

framework for assessing energy use in the domestic sector was developed by Kowsari and Zerriffi (2011). 

Recently, Von Grabe (2016a, b) postulated a systematic framework for the energy-related human–

building contextual factors with the aim of providing a synergetic organization of this interaction 

phenomena in buildings. Likewise, Wolske et al. (2017) introduced an integrated framework that 

combines variables from behavioral theories to explain consumers’ interest in residential solar 

photovoltaic systems. Similarly, based on a theoretical framework integrating multiple theories and 

disciplines, Li et al. (2017) developed a survey instrument for gathering interdisciplinary knowledge on 

energy use behavior in buildings. Li’s study provided survey data on statistical models of occupant 

behavior, providing insights into occupant energy-saving behavior and characteristics as a function of 

motivation, opportunity, and ability to interact with building technologies. Importantly, Li’s study also 

provides useful suggestion on occupant interventions.  

In the following sub-sections, a set of theories that address the broader scope of social and building 

engineering contributions to the occupant behavior literature is illustrated, including the Social Cognitive 

Theory (Bandura 1986), the Theory of Planned Behavior (Ajzen 1991), Theory of Practice (Shove 2014), 

as well as the Actor-Network Theory (Latour 1994) and the Attitude-Behavior-Context (A-B-C) model 

(Abrahamse and Steg 2009). 

Table 9-1 summarizes examples of commonly used social science theories in occupant behavior and 

energy behavior research. 
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Table 9-1: Examples of theories used to examine occupant and energy behavior 

Theory Name Original Authors 

The Attitude Behavior Context (A-B-C) 

Model 

Guagnano et al. (1995). Influences on attitude-behavior 

relationships: A natural experiment with curbside recycling. 

Environment and behavior, 27(5), 699-718. 

Norm Activation Model (NAM) 
Schwartz, S. H. (1977). Normative influences on altruism. 

Advances in experimental social psychology, 10, 221-279. 

Sustainable Energy Technology Acceptance 

Model (SETA) 

Huijts et al. (2012). Psychological factors influencing sustainable 

energy technology acceptance: A review-based comprehensive 

framework. Renewable and Sustainable Energy Reviews, 16(1), 

525-531. 

Social Cognitive Theory 
Bandura (1986). Social foundations of thought and action: A 

social cognitive theory. Englewood Cliffs, N.J.: Prentice-Hall. 

Social Practice Theory 

Giddens (1979) ‘Central Problems in Social Theory. Action, 

structure and contradiction in social analysis,’ Contemporary 

Social Theory. 

Bourdieu (1990). The logic of practice. Stanford University Press. 

Technology Acceptance Model (TAM) 

Davis (1989). Perceived usefulness, perceived ease of use, and 

user acceptance of information technology. MIS quarterly, 319-

340. 

The Theory of Planned Behavior (TPB) 
Ajzen (1991). The theory of planned behavior. Organizational 

behavior and human decision processes, 50(2), 179-211. 

The Theory of Practice (TP) 

Bourdieu (1969) ‘The logic of practice,’ Studies in Philosophy 

and Education, 7(1), pp. 28–43. 

Bourdieu (1977) ‘Outline of a Theory of Practice,’ Cambridge 

studies in social anthropology, 16(16), p. 248. 

Giddens (1979) ‘Central Problems in Social Theory. Action, 

structure and contradiction in social analysis,’ Contemporary 

Social Theory 

Reckwitz (2002) ‘Toward a Theory of Social Practices: A 

Development in cultural Theorizing,’ European Journal of Social 

Theory, 5(2), pp. 243–263. 

Value-Belief Norm Theory (VBN) 

Stern et al. (1999). A value-belief-norm theory of support for 

social movements: The case of environmentalism. Human 

Ecology Review, 81-97. 

 

9.1.1.  The Social Cognitive Theory 

The Social Cognitive Theory (SCT) developed by Bandura (1986) describes human behavior as a 

dynamic interplay of environmental, personal, and behavioral factors (Figure 9-1). According to SCT, 

people learn a certain behavior by observing others under the influence of these three factors (triadic 

reciprocal determinism). In other words, what people perceive (environmental physical and social factors, 

comfort and control), believe (personal factors), and do (exercised past behavior) affects their own and 

other people’s behavior (exercised future behavior). By applying SCT, one study attempts to investigate 

how occupant perceptions of their physical and social environment, such as building characteristics, 

social norms in the workspace dynamic, and perceived comfort sensation and behavioral control over the 

shared indoor environment, affect their reported behavior (D’Oca et al. 2017). In turn, this knowledge 

became a functional predictor for their intended future behavior. 
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Figure 9-1: Triadic reciprocal determinism of environmental, personal, and behavioral factors in 

Social Cognitive Theory 

9.1.2.  The Theory of Planned Behavior  

The Theory of Planned Behavior (TPB) developed by Ajzen (1991) has been widely adopted by 

researchers in the fields of energy and social sciences to analyze pro-environmental behavior and target 

specific attitudes, subjective norms, and perceived behavioral control shaping intentions. According to 

TPB (Figure 9-2), an individual’s intention towards that behavior is the major predictor of behavior, and 

can hence be considered the direct antecedent (proxy) for behavior. In turn, behavioral intention is 

influenced by three key components: (1) attitude, (2) subjective norms, and (3) perceived behavioral 

control (PBC). Confirming Ajzen’s theory, Kaiser and Gutshcer (2003) demonstrated that the three 

components of TPB were capable of predicting up to 81% of an occupant’s intention for energy 

conservation in their home. Similarly, Greaves et al. (2013) studied energy-related behavior within a 

workplace, and determined that TPB explained 46–61% of the variance in employees’ intentions to 

engage in pro-environmental behavior, such as turning off their computers when leaving their desk, using 

video conferencing rather than traveling to meetings, and recycling at work. 

 

 
 

Figure 9-2: Framework of Theory of Planned Behavior explains attitude, subjective norms, and 

perceived control influencing the exercised adaptive control in office buildings 
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9.1.3.  The Theory of Practice  

The Theory of Practice (TP) is a social theory stating that behavior cannot be seen only as individual 

actions (where all social phenomena are explained in terms of individual actions). Instead, the theory 

suggests that behavior is an outcome of complex inter-relationships and shared social practice, including 

the influence of the (social and physical) environment in which they occur. The theory explains that a 

practice is a constant interplay between social structure and human agency, which shape one another in a 

dialectic process. As argued by Chappells and Shove (2005), other human and non-human actors play an 

important role in why people (with diverse motives and intentions) behave in a certain way. They 

developed a three-element model incorporating materials, meanings, and procedures. This implies that 

behavior is a product of the relationship between people, their environment, and the technologies that 

surround them. 

TP is, as Reckwitz (2002) further explains, fundamentally different from TPB. The latter is based on the 

“homo economics” principle, which explains human action through recourse to individual purposes, 

intentions, and interests; social order is then a product of the combination of single interests. The model 

of “homo sociologicus,” which is the basis of TP, explains human actions by pointing to collective norms 

and values. Social order is guaranteed by a normative consensus, embedded in collective cognitive and 

symbolic structures and in a ‘shared knowledge,’ which enables a social, common, shared, or collective 

way of ascribing meaning to the world. 

9.2. Case studies of occupant behavior using interdisciplinary 

approaches 

This chapter presents four important case studies of interdisciplinary work to enrich the overall 

understanding of occupant behavior. The following sections discuss four case studies in terms of their 

purpose, methodology, results, and implications. 

9.2.1. Case study I: Energy saving behavior in commercial buildings  

Project title: Investigating willingness to save energy and communication about energy use in the 

American workplace with the attitude-behavior-context model (Xu et al. 2017).  

The purpose of this study was to investigate the willingness to save energy and communication about 

energy use in the American workplace through the Attitude-Behavior-Context (A-B-C) model 

(Abrahamse and Steg 2009). 

Built on the A-B-C model (Figure 9-3), this study examined how attitudinal factors (i.e., belief about the 

importance of energy saving and belief about the comfort–productivity connection) and contextual factors 

(i.e., group norms and organizational support) were associated with 1) employees’ willingness to save 

energy at work at some cost to personal comfort and 2) the perceived ease of communicating with co-

workers about saving energy. 
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Figure 9-3: The Attitude-Behavior-Context model 

A total of 245 employees in the United States completed an online survey containing both quantitative 

measures and open-ended questions. Five-point Likert scales were used to measure the following 

variables: willingness to save energy, perceived ease of communication, energy saving belief, comfort–

productivity belief, group norms, and organizational support. Regression analyses were conducted with 

the attitudinal variables, contextual variables, and their interactions as predictors in the model. 

Approximately 50% of the participants indicated a willingness to save energy at work at some cost to 

personal comfort, and about 65% of the participants reported that it was easy to communicate with their 

co-workers about energy saving. Regression results showed that employees who believed in the 

importance of saving energy were more likely to sacrifice some personal comfort to save energy. Instead, 

those who did not think comfort and productivity were associated were more likely to sacrifice comfort 

when they perceived organizational support; positive group norms were associated with perceived ease of 

communication about energy saving, but only for employees who believed energy saving to be important. 

The most frequently cited reasons for not being willing to save energy were comfort needs (39.5%) and 

concerns about work productivity (34.9%). However, these concerns may not be well-grounded, as 

several scholars (Dear et al. 2010) have found that ideal productivity could be acquired over a vast range 

of indoor conditions according to the adaptive comfort theory. The survey participants cited co-workers 

not caring about the energy/environmental issues as the major barrier to communicating about energy 

saving, which supports the finding that contextual factors (the group norms) are important. 

This was one of the first studies to integrate social psychology, occupant behavior, and building design 

theory to enhance the understanding of energy behavior in office buildings. It demonstrated, most 

importantly, the interactions between attitudinal factors and contextual factors in affecting energy 

behavior at work. The findings can be used to design better energy saving programs based on employee 

characteristics, as well as to cultivate an organizational culture that fosters energy-saving behavior. The 

findings confirm the necessity to consider human factors in the modeling and simulation of building 

energy use. 
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9.2.2. Case study II: Residential occupants’ energy saving behavior 

Project title: Thermal comfort or money saving? Exploring intentions to conserve energy among low-

income households in the United States (Chen et al. 2017). 

The impact of one important residential group—low-income households (LIHs)—has been repeatedly 

overlooked in the residential energy sector (Allen et al. 2006, Dong et al. 2013, Farley and Mazur-

stommen 2014, Silva and Ghisi 2014). Based on an extended TPB framework (Ajzen 1991), which 

includes the major variables proposed or proven to predict energy-saving intention (e.g., attitude towards 

energy saving, perceived behavioral control, social norms, energy-environmental concerns, cost concerns, 

thermal comfort needs, climate zone, and some demographics), this study attempted to answer the 

following series of questions: 1) What are the most important social psychological factors influencing 

LIHs’ energy conservation motives? 2) Among LIHs, are climate zones and demographics predictive of 

energy-saving intentions? and 3) Does the extended TPB framework outperform the original TPB 

framework in predicting energy-conservation intentions among LIHs? Previous studies failed to examine 

the social-psychological variables at play in the actual adoption of these programs. This research used 

tools to better understand and engage the LIH population in energy-saving practices. 

An Internet survey was distributed among 248 LIHs in the United States. Participants had to pay non-flat-

rate electricity bills and have an annual income of less than twice the federal poverty level to qualify. 

Participants were spread across seven of eight climate zones in 43 states and the District of Columbia. 

Regression analysis was conducted to determine the impact of each independent variable on energy 

saving intentions. 

This study found that low-income families, in general, expressed a mid-level intention to save energy. On 

each item measuring intention to save, at least 75% of the respondents indicated somewhat positive 

intentions to conserve energy. The TPB variables (attitudes, subjective norms, and perceived behavioral 

control) were all significant and accounted for half of the variance in energy-saving intentions. Attitudes 

had the greatest impact, followed by PBC. In the extended TPB model, cost concerns had the strongest 

positive impact, while the thermal comfort needs had the next strongest impact, albeit negative; energy 

concern and frugality each had a positive impact on energy saving intentions. In terms of the influence of 

demographics, females had a greater tendency to save energy, and residents in warmer climate zones had 

stronger intentions than residents in colder climate zones. The extended TPB framework was proven to 

outperform the original framework in predicting energy-saving intentions. This research shows that 

internal values and perceptions, such as attitude, energy concerns, and PBC, have greater influences than 

external factors. Most notably, surveyed LIHs had a low level of PBC, and PBC was demonstrated to be 

one of the most important predictors of energy-saving intention. This echoes the previous finding that a 

lack of control over one’s environment is a major barrier to conserving energy. To conclude, we advocate 

the consideration of social-psychological variables in improving the design of energy saving programs 

among LIHs. 
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9.2.3. Case study III: A review of occupant behavior survey studies 

Project title: Investigation of methodology applied and limitations of 33 occupant behavior surveys 

(Belafi et al. 2017).  

In this case study, 33 studies on occupant behavior using cross-sectional surveys or interviews for data 

collection were reviewed (Belafi et al. 2017). Although these studies contributed to the field of energy-

related occupant behavior research, this review showed that many methodological aspects of the 

questionnaire surveys were poorly considered or entirely neglected. This issue may have introduced 

significant bias into the results of these studies.  

Cross-sectional surveys are useful tools for gaining information of energy-related occupant behavior. 

However, the information in the literature is scattered in terms of occupant action, building type, and 

geography (Figure 9-4). 

 

 
Figure 9-4: Temporal and geographic distribution of survey projects reviewed 

In most cases, researchers focused on a particular environmental or other physically tangible parameter 

that drives human behavior. These projects were designed and conducted by researchers with 

backgrounds in technical and engineering fields. Therefore, important issues from the field of social 

science were ignored or oversimplified, and many other key aspects of human behavior were not 

measured or considered. The field of energy-related occupant behavior research could benefit from the 
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adoption of surveying methods developed by experts in the social sciences to ensure that surveys are 

comprehensive and integrate the relevant social and behavioral aspects. 

The importance of a valid construction in ensuring the reliability of results was demonstrated. Moreover, 

the phrasing of the questions must be clear, and high-quality translations are needed in the case of 

international studies. Defining a clear branching structure and using smart piping techniques to eliminate 

superfluous questions and answer choices, and reducing the length of the questionnaire to 15–20 minutes, 

is essential. This might also influence the selection of appropriate survey tools for the research. With a 

clear structure, it is also easier to manage and process datasets from different countries. Some studies 

reviewed introduced monetary incentives to obtain higher response rates (lottery, raffle), which might 

help to motivate occupants to complete the questionnaire. At the same time, the phrasing of the invitation 

email should be clear, and must introduce the research topic in an interesting way to achieve a high 

response rate from occupants. 

This review of survey distribution methods shows that obtaining an appropriate contact database is 

essential for the success of large-scale cross-sectional projects, as both the quality and quantity of survey 

responses are crucial. 

The sample size was rarely discussed in the studies reviewed. It appears likely that the sample size was 

mostly determined by the resources available to reach respondents. Therefore, it is highly recommended 

that future cross-sectional questionnaire projects provide statistically appropriate sample size calculations 

to ensure the reliability of the results obtained from datasets. In addition, understanding the errors and 

limitations of a dataset when an appropriate sample size could not be reached is necessary. Ensuring 

sample diversity and appropriate geographic coverage is also important, and another key element is 

accounting for the similarities and differences in specific buildings and rooms in which the questionnaire 

was completed.  

Complementary datasets are beneficial, but can be difficult to obtain with large sample sizes. Data on the 

environmental conditions of the responding occupant should be collected at the time of their answers as 

part of the cross-sectional questionnaire.  

9.2.4. Case study IV: Understanding architectural and social-psychological 

influences on occupant behavior in office buildings  

Project title: Understanding qualitative and quantitative influences on occupant behavior in offices 

(Roetzel and Chen 2016). 

The aim of this study was to understand the interplay of social-psychological and architectural parameters 

in influencing occupant behavior and the resulting operational energy consumption in offices. Existing 

literature on occupant behavior was reviewed from both architectural and social-psychological 

perspectives. The key influences identified by both disciplines were mapped into the framework of 

Integral Sustainable Design (ISD), with the aim of providing a more holistic framework for further 

research. 
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Annex 66 originally emerged out of a building simulation context, and the nature of the simulation tools 

required occupant behavior to be approached in a quantitative manner. While the actions or patterns of 

behavior can be described quantitatively, the drivers (why people act) are often qualitative in nature. To 

translate qualitative behavioral drivers into quantitative simulation inputs, a more holistic understanding 

of occupant behavior was required (Roetzel and Chen 2016). The theoretical approach of ISD (DeKay 

and Bennett 2011) based on Wilber’s (2000) Integral Theory provides a framework for a more holistic 

understanding of occupant behavior. It examines any occurrence from multiple, simultaneous qualitative 

and quantitative perspectives. These perspectives are represented by four quadrants (see Figure 9-5), with 

the upper-left quadrant focusing on experiences (subjective + individual), the lower-left quadrant on 

cultures (subjective + collective), the upper-right quadrant on performance and behaviors (objective), and 

the lower-right quadrant on relationships and context (objectives, systems). For this study, the ISD 

approach was used to frame a preliminary literature review focused on identifying social-psychological 

and architectural parameters that influence occupant behavior and the resulting operational energy 

consumption in offices. 

The identified occupant behavioral parameters were mapped to the four quadrants of the ISD approach, as 

illustrated in Figure 9-5. The upper-left quadrant accounts for individual experiences as a result of social 

and architectural context, which influence human behavior. The lower-left quadrant refers to collective 

interpretations (social norms) in which the individual experiences are situated. The upper-right quadrant 

refers to influences on occupant behavior, which can be attributed to the building and its controls. The 

lower-right quadrant describes influences on occupant behavior, which are defined by contextual 

relationships between occupants and the building.  

 
Figure 9-5: Architectural and social-psychological parameters mapped across the four quadrants of 

the ISD 
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This study demonstrates that the ISD approach can be used to frame future occupant behavior research in 

a more holistic way. The preliminary literature review identified influences on occupant behavior from 

the perspectives of social-psychology and architecture, opening up pathways for more in-depth inter- and 

trans-disciplinary research in the future. 

9.3. Interdisciplinary cross-country research methodology 

The following briefly describes the interdisciplinary cross-country research methodology developed 

within the framework of Annex 66 and its background. 

Interdisciplinary research among behavioral and energy-related fields could be employed through cross-

country studies by analyzing occupant behavior data from diverse backgrounds and cultures. Despite a 

wealth of research in recent decades, there is still a shortage of social scientists and engineers who are 

trained in conducting cross-country and comparative studies (Leeuw et al. 2008). In particular, few 

occupant behavior researchers have conducted comparative studies across countries or continents.  

Within the context of occupant behavior studies, researchers could use cross-country surveys to compare 

the diverse characteristics of occupant behavior under various building sectors and social-psychological 

influences, which would facilitate interdisciplinary collaboration. In some cases, cross-country survey 

research could be similar to other forms of survey analysis, albeit with certain key differences that 

distinguish an effective study from one that is ineffective. For example, a monocultural study can utilize 

tailored language and culture-specific concepts, while a multicultural study cannot for fear of cultural 

bias. Monocultural studies should produce reliable and valid data within a national context that are still 

capable of being compared and harmonized across contexts (Leeuw et al. 2008). Comparative research at 

the national level benefits the country conducting the research as well as any countries that utilize the 

data; the initial country receives data that, for example, can be used to identify significant intra-country 

trends, and other countries can use the same data to compare a variable under different demographics. 

These provisions of comparative research result in benefits such as stronger correlations and a framework 

that can be utilized in future research.  

A common challenge for comparative research across countries is the cost. Despite the apparently 

expensive and complex nature of obtaining multinational data, refined research methods are not 

guaranteed. Cost is a large obstacle preventing comparative studies from pre-testing questions and 

developing effective surveys. Harmonizing research methodologies and data across countries is also 

challenging because of cultural differences. When language, research practice, and data collection 

methods differ between two or more countries, the number of variables that must be controlled for 

becomes important. For example, a country that values living with family past young adulthood versus a 

country that does not hold that value will most likely have different socio-demographics and energy-

saving behaviors. Methodologies used in one culture should be rigorously analyzed to account for cultural 

bias, validity, and reliability before being used in another cultural context (Leeuw et al. 2008). 

Comparative research ensures quality data through a high rate of comparability. A common method of 

ensuring this comparability is to retain as many variables as possible. However, this is not always optimal 
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because of different definitions and practices that can limit survey analysis. By using standardization 

practices to enhance comparability and determine the stipulations of a study between countries, 

researchers can analyze cross-national studies through a uniform metric system (Leeuw et al. 2008). 

Therefore, a uniform system would strengthen the reliability and establish connections among multiple 

nations, which future studies could utilize to ensure the continuation of occupant behavior research. 

9.4. Outcomes from the interdisciplinary research 

9.4.1.  Interdisciplinary research framework 

Reflecting the emergent trend in energy and social sciences research, one of the goals of Annex 66 was to 

develop a data-driven research framework integrating multiple theories and interdisciplinary aspects 

relevant to occupant behavior research. D’Oca et al. (2017) explored and combined theories and insights 

on the technical and social dimensions of human–building interaction to support researchers in the fields 

of building and social sciences to better quantify the influence of occupant behavior on building energy 

performance (Figure 9-6). The research framework proposed by D’Oca et al. is grounded in SCT, the 

DNAS framework for energy-related behavior, and TPB. 

 
Figure 9-6: Interdisciplinary research framework integrating the SCT, DNAS, and TBP 

The integrated framework has several strengths compared with each individual theory. These strengths 

combine in the selection of the most significant socio-technical components of energy-related behavior 

from each of the three frameworks, as well as in the synthesis of new variables reflecting the socio-

technical nature of building energy use behavior.  
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As an example, TPB ignores the need to perform certain tasks, but the DNAS framework has an explicit 

component to enhance these requirements. The DNAS framework explains energy-use behavior (the 

Actions having energy- and comfort-related effects on the control Systems) as a direct consequence of 

personal Needs, (i.e., thermal, visual, acoustic comfort) compelled by a set of motivational Drivers (e.g., 

temperature too hot, poor indoor air quality, lack of view from outside). However, data obtained through 

that linear approach are still based on somewhat physical components, which limit the degree to which 

social norms, group dynamics, or individual motivations can be covered.  

TPB provides explicit components to improve DNAS, i.e., how the need to perform some behavior is 

mediated by social dynamics in the workspace, such as the perceived social pressure from co-workers and 

employers on how one should behave, or how the intention to share control is shaped by personal beliefs, 

habits, or the perceived power over the control systems.  

SCT connects with the DNAS framework and TPB as the outermost layer, organizing the dynamic 

interplay of environmental, personal, and behavioral factors (motivational drivers) of energy-use 

behavior. This point is reflected in the new framework through the hypothesis that people adopt certain 

behaviors to accomplish basic biological needs. This is affirmed by the influences of personal cognitive 

factors from the social environment (i.e., attitudes, social norms, perceived behavioral control that is 

further explained using elements of TBP) or the physical environment (i.e., the actual access to the 

control systems as described in the specific element of the DNAS framework). 

9.4.2. Design of interdisciplinary cross-country survey 

The research framework stands as the foundation for a survey instrument that aims to validate cross-

country data-driven knowledge on four key research questions associated with the key learning 

objectives: motivational drivers, group behavior, ease and knowledge of control, and satisfaction and 

productivity. An online survey including 37 questions was designed to collect data across four continents 

(America, Asia, Europe, Australia) and eight countries (Brazil, China, Italy, Hungary, Poland, 

Switzerland, Taiwan, United States). Every survey question was implemented using the Qualtrics 

software. The survey instrument, originally developed in English, was translated into local language using 

a Double Translation Process (DTP) protocol (McGorry 2000) to ensure equivalence across languages. 

9.4.3. Results of the interdisciplinary cross-country survey: Italian case 

study 

The survey questionnaire was first validated in three university institutions located in Turin (Polito – 

Politecnico di Torino), Perugia (UniPg – University of Perugia), and Rende (UniCal - University of 

Calabria). 

The target group for the proposed survey was administrative staff, faculty members, and students who 

regularly occupy a working space. The Qualtrics survey link was sent to the sample group through the 

institutional e-mail lists of the three universities over a period of four weeks during the spring season 

(from April 5 to May 8, 2017). Reminders were sent to the participants at the end of each week. A total of 
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1160 valid responses were collected from the online questionnaire (Table 9-2). Despite incentives, the 

response rate was low (11–16%). 

Table 9-2. Response Rate 

 

PoliTo – Turin UniPg – Perugia UniCal – Rende 

Total Valid  502 405 253 

Total Sent 4424 2991 1598 

Response Rate 11% 14% 16% 

The respondents’ gender was almost equally distributed (50% male and 48% female, 2% NA). Most were 

full-time employees (with 31–40 hours workspace occupancy per week), who typically occupy shared or 

private offices (33%), shared open offices (30%), cubicle spaces (2%), or unspecified locations (35%). 

Significantly, single private offices were typically occupied by men (61%) from 40–61 years old, with 

fewer women (37%) or younger people of 18–28 years old (1%). The majority of the sample population 

holds a Ph.D. or post-laureate Master’s degree (41%), or a Master’s or equivalent 5-year degree (36%).  

Regarding the individuals’ motivational drivers towards interacting with shared building environmental 

controls, office workers mainly open windows for fresh air, while they typically close windows because 

the indoor temperature is perceived as too cold or too warm. Window blinds and shades are frequently 

pulled up or opened to let more daylight into the office space, and are mainly drawn to reduce the glare on 

computer screens or in the workspace. Thermostat set-points and lighting systems are generally regulated 

to restore comfort conditions in the workspace (because the temperature is perceived as too hot or too 

cold or to adjust the lighting level in the room) and less frequently as a consequence of energy 

conservation behavior. 

Regarding group dynamics (Figure 9-7), the intention to share controls does not appear to be correlated 

with perceived comfort, satisfaction, productivity, or knowledge of how to use technology, but rather as a 

behavioral trait of the occupant. Shared control of the indoor environment in the office space is generally 

perceived as a fair or good thing across all climate zones, highlighting a common positive attitude of 

office workers towards sharing control devices. Occupants in the Northern region (Turin) tend to report a 

stronger subjective norm on the co-workers’ expectation to share control over the Indoor Environmental 

Quality (IEQ). 

 

Figure 9-7: Workspace group norms across the three climatic zones: Northern-continental (black), 

Central-mild (red), and Southern-Mediterranean (gray) 
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Figure 9-8: Frequency of perceived ease of sharing and knowledge of control averaged across the 

three case studies 

Regarding perceived behavioral control (Figure 9-8) of building technologies (ease of usage and 

knowledge), office workers tend to perceive greater ease in sharing the control of operable windows, 

lighting systems, and blinds/shades than toward thermostat settings. Similarly, respondents appear to be 

more acquainted with the usage of windows, blinds, shades, and artificial lighting than the regulation of 

thermostats in their workspace. Consequently, a general dissatisfaction emerges over the shared control of 

thermostat settings in office spaces (Figure 9-9). 
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Figure 9-9: Satisfaction of controls averaged across the three case studies 

Focusing on perceived comfort, satisfaction, and productivity (Figure 9-10), office workers tend to be 

more satisfied with the quality of natural and artificial lighting than with the indoor temperature and 

indoor air. Natural and artificial lighting seem to predominantly influence productivity, whereas variables 

such as indoor temperature and indoor air are more frequently perceived as responsible for the loss of 

productivity by office workers. Perceived comfort was correlated with satisfaction and productivity, and 

less so with the ease of usage and knowledge of control, as well as attitudes and subjective norms. 
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Figure 9-10: Frequency of satisfaction and productivity averaged across the three Italian climate 

zones 

9.5. Challenges faced by interdisciplinary studies of occupant 

behavior 

Despite the interdisciplinary research related to occupant behavior described above, there exist a number 

of challenges. These challenges can be grouped into general challenges of interdisciplinary research and 

specific challenges related to occupant behavior research. The former include the tendencies that 

interdisciplinary research is “harder to fund, do, review and publish” (Editors of Nature 2015). Without 

going into detail, the key factor in addressing these points is the openness and ability to redefine 

perspectives and paradigms, whether as the funding giver, researcher, reviewer, or publisher. A first and 

fundamental step is open communication, discussion, and sharing related to fundamental, but essential, 

aspects such as the definitions inherent in each discipline, e.g., when discussing a “model” and common 

objectives. The latter, i.e., challenges specific to occupant behavior research, include the integration of 

findings revealed by interdisciplinary research projects into occupant behavior models and simulation 

tools, and further into design and operation practices. The research conducted within the framework of 

Annex 66 includes findings that show the significance of, for example, personality traits—a psychological 

construct—on behavioral patterns (Schakib-Ekbatan et al. 2015, Schweiker and Wagner 2015, Schweiker 

et al. 2016); this is the first step towards a framework facilitating the integration of complex and 

interdisciplinary occupant behavior models into simulation tools by means of the obXML framework 

(Hong et al. 2015). However, a bigger challenge is to show the applicability and value of such findings 

and construct tools for the design and operation of future buildings and/or intervention studies. 

Although occupant behavior research has seen important advances in recent years, substantial challenges 

remain that call for further interdisciplinary research. A key research challenge among multidisciplinary 
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fields centers on the complexity of human behavior. With a lack of consolidated methods and platforms to 

test findings, research outcomes will remain of limited use.  

9.6. Interdisciplinary studies conclusions and future work 

Human behavior is a critical dimension that is as important as technological factors in ensuring the 

energy-efficient design, construction, and operation of buildings. Occupant behavior research has the 

potential to solve some of the significant challenges surrounding single-discipline research through 

interdisciplinary collaborations amid social scientists, building designers, and engineers. Future occupant 

behavior research can utilize interdisciplinary studies as exemplified in the following areas: 

1. Allow researchers to pay increased attention to occupants and their social contexts, and identify 

the specific social-psychological variables influencing the human–building interaction. These 

variables tend to vary with the target behavior, building type, and demographics. For example, 

energy-saving or pro-environmental behavior is typically guided by self-interest, meaning that if 

people care about themselves or their children’s future, they will care about environmental issues 

(Young et al. 2015). This creates the need for investigations focused on an extensive set of social-

psychological factors relating to occupant behavior. Therefore, integrating social science theories into 

occupant behavior has become important. As identified by Hong et al. (2015), when examining the 

full scale of human–building interactions, occupant behavior research must “focus on the individual, 

group, and collective behaviors.” For example, a study conducted by Chen and Knight (2014) found 

that both injunctive norms and perceived behavioral control had direct and positive effects on Chinese 

employees’ intention to conserve energy in the workspace. 

2. Occupants have diverse personalities and backgrounds, making them heterogeneous. This point 

is critical in developing a representative sample that allows results to be generalized at the population 

level. To encompass the heterogeneity of occupants (i.e., location, gender, culture) and diverse 

environments (residential and commercial buildings), research requires extensive datasets from 

integrated sources such as community income maps and utility energy consumption. As the data 

expand, the choices and solutions surrounding energy-saving behavior also expand. However, 

gathering human subject data can be a challenging task because of privacy and data protection issues. 

Future research should account for this difficulty and employ multiple methods to increase the data 

variance, such as widespread surveys and interviews. 

3. As occupants often share spaces, the limited attention on understanding and modeling group 

behavior in commercial buildings should be urgently addressed. The engineering and building 

design communities can be supported on this issue through social science theories evaluating the 

motivations and productivity of personal and group norms within a composite indoor environment. 

The implication of comfort and energy requirements through multi-adaptive behaviors continues to be 

difficult to clarify, however, by enhancing the design and operational phases of commercial buildings, 

as well as model predictive control algorithms through the integration of data-driven knowledge 

concerning human perception, habits, and behaviors, these issues can be addressed. Advanced 

methodologies for integrating self-reporting and simulated behavioral data are still required for 

further investigation and validation. 
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4. In contrast to the classical rational choice theory, intervention strategies (i.e., financial 

incentives and information) have only added complexity to occupant behavior and building 

efficiency (Parker et al. 2012). Therefore, it is important to clearly identify all underlying 

mechanisms and barriers to behavior. Specifically, it is necessary to evaluate all arbitrary variables 

that describe why certain behavioral analyses do not have advantages. Considering both social-

psychological variables and political orientation, for example, Xu et al. (2015) found that 

environmentally framed benefits induce more positive attitudes toward energy saving than 

economically framed benefits among those with moderate levels of environmental concern and 

among more politically liberal participants. This suggests that environmentally framed messages 

might stimulate positive responses within a subset of US energy consumers. In the contexts of both 

office and residential settings, therefore, researchers should consider striking a balance between 

occupant comfort and energy efficiency, while identifying the behavioral and psychological 

relationships underlying occupant energy-saving intentions. 

5. Alongside a further inquiry into social and psychological influences on OB, more research on 

the architectural context in which occupant behavior is situated would be beneficial for a more 

holistic understanding. While research has focused predominantly on control patterns related to 

adaptive opportunities, the nature of these controls, the systems they are controlling, and the space 

they are servicing should also be considered and further investigated.  

6. Interdisciplinary solutions have the potential to increase energy conservation and reduce 

energy consumption. As illustrated in Figure 9-11, many different specialists involved in the diverse 

elements of a building’s lifecycle must be included in the research, with expertise from the human, 

built, and digital environments. This covers building occupants, architects, building owners, 

operators, facility managers, HVAC engineers, software developers, researchers, and policy makers 

in the energy, social, and building science fields. These models are continually changing and 

improving as interdisciplinary research continues to refine our understanding of occupant behaviors 

and their interactions with a variety of buildings, appliances, control options, and other occupants.  

7. The future of occupant behavior research calls for standardized practices that encompass an 

interdisciplinary approach to the diverse fields being investigated. This will ensure universally 

agreed information, knowledge, and insight into energy-related occupant behavior in buildings. Better 

understanding and representations of occupant behavior can improve the global energy performance 

of buildings. Better energy performance predictions would be beneficial for all stakeholders in a 

construction project, from business investors and building designers to building users and managers.  

Going forward, efforts to strengthen and update interdisciplinary and international relationships and 

networks will be continuously nurtured, both within Annex 66 research arena and the industry, through 

groups such as the ASHRAE Multidisciplinary Task Group (MTG) on Occupant Behavior in Buildings 

(OBB). The final goal is to drive better empirical findings towards the development of market actions and 

policies to support the global goal of energy saving and carbon reduction in the building sector. 



  

    125 

 

 
Figure 9-11: Domains and disciplines relevant to occupant behavior research 
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10. Summary and Conclusions  

This chapter summarizes the key research findings, main outcomes, and potential topics for future 

research. 

10.1. Key findings  

The major product of Annex 66 is a scientific methodological framework to guide occupant behavior 

simulation research on data collection, modeling and evaluation, modeling tools development and 

integration, applications, and interdisciplinary issues. Through collaborative research activities, Annex 66 

community reached a consensus regarding occupant behavior research and identified some important 

issues that are worth thorough deliberation and further discussion. The following topics have been studied 

in Annex 66, and their significance identifies them as worthy of further study in future work. 

1. Occupant behavior has significant impacts on energy use and occupant comfort in buildings, as 

demonstrated in the 32 case studies. Data, methods, and models are developed and applied to 

understand and reduce the gap between the simulated and measured building energy performance by 

representing occupant behavior in a standardized ontology and XML schema, developing an 

occupant behavior software module for co-simulation, and integrating these with building 

performance simulation programs. 

2. Data collection is fundamental for occupant behavior modeling. Methods of collecting data are 

evolving with the rapid development of sensors and Information and Communication Technologies. 

Most data collection campaigns are conducted in a typical working environment rather than a 

laboratory. With precise control of the indoor environment and good reproducibility, laboratories are 

becoming an alternative for the collection of occupant behavior data. However, the “Hawthorne 

Effect,” whereby subjects may alter their behavior when they are aware of being observed, may be 

an unfavorable factor for laboratory studies involving occupants. New sensors for detecting 

occupancy and occupants’ actions are being developed. For example, the occupancy in a space can 

be measured in various ways. The indirect approach uses the change in CO2 concentration to 

estimate the occupancy. Infrared or ultrasonic occupancy sensors try to detect the movement of 

occupants around a room, whereas wearable sensors and smartphones can locate occupants with a 

high resolution. Cameras are also being used to recognize occupancy patterns, producing data that 

could be analyzed with image recognition algorithms and offering a high computational capacity. 

New devices such as Microsoft’s Kinect are being used to automatically detect occupancy. The 

evolution of technology requires researchers to have a good understanding of the available data 

collection methods and apply them to the most appropriate situation. However, there are still 

uncertainties regarding the accuracy of image analysis and positioning using Wi-Fi signals, as well 

as the associated ethical considerations. The development of data collection techniques allows for the 

generation of large-scale datasets. For instance, applications on phones can identify occupants and 

their movements, and these data can reveal nationwide patterns of occupants’ habits. Data mining 
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methods are being introduced to efficiently analyze and extract valuable knowledge from such large 

datasets. 

3. Choice of occupant behavior models in building simulation depends on the building context 

and application purposes. The modeling of occupant behavior often encompasses stochasticity to 

capture the spatial, temporal, and individual diversity. Nevertheless, related studies have suggested 

that stochastic models do not necessarily perform better than simplified deterministic models. The 

appropriate model should be determined based on the various application scenarios. Current 

occupant behavior models focus on the estimation of building energy consumption for a relatively 

long period, typically a year. The purpose of this type of model is to make the estimation as accurate 

as possible. In other situations, such as for model predictive control, however, the purpose of the 

model is to predict the specific parameters for an ensuing short-term period. Models that simulate 

energy consumption are not good candidates in this context, as they have little information with 

which to predict the near future based on available historical data. Another view of current occupant 

behavior models indicates that they are data-driven, implying that the models were built through 

regression based on data collected from the environment and occupancy or occupants’ actions, rather 

than by studying the occupant behavior mechanism from a physiological or psychological 

perspective. The development of thermal comfort research and its combination with sociological 

studies could shed some light on the description and modeling of occupant behavior on a 

mechanism-modeling basis. The combination of these studies allows for a new path for occupant 

behavior modeling. The evaluation of occupant behavior models, as revealed earlier, should take 

explicit metrics from the application scenario to quantify model performance. Specifically, the 

evaluation of stochastic models has roots in the statistical comparison between stochastic simulation 

results and deterministic measurement results (i.e., using bootstrap validation, cross-validation, or 

random sample validation). New approaches that adopt statistics techniques for the evaluation of 

model accuracy are under development.  

4. The integration of occupant behavior models with building performance simulation tools links 

academic research with industrial applications. The DNAS framework and the co-simulation 

architecture proposed in Annex 66 have made great progress in integrating multiple occupant 

behavior models with building performance simulation programs in a flexible and robust manner. 

Nevertheless, significant work remains in pursuit of easy-to-use interfaces in occupant behavior 

simulations for practical applications. An important issue is the representation of occupant behavior 

diversity. Behavior patterns differ among individuals, and this diversity is perplexing for researchers 

and engineers tasked with identifying the behavior patterns and corresponding parameters for 

simulations involving occupants. As a compromise between the diversity of actual occupant behavior 

and the simplicity of building simulations, some typical occupant traits have been proposed, i.e., 

reconciling clusters of behavioral patterns with data-driven inputs and predictive models. Efforts 

have been made by the Annex 66 community to address occupant behavior diversity with different 

approaches, such as case measurements and questionnaires. This open issue is of great significance 

in the application of occupant simulations and requires significant further investigation. 

5. The application of occupant behavior models veils the technical details of modeling and 

provides engineers with a friendly interface. A guidebook detailing the appropriate situations for 

each model would provide significant help to modelers, allowing them to avoid using models in 
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scenarios completely different to those for which they were developed. Policy makers could benefit 

from occupant behavior modeling by observing the simulated energy reduction when behavior 

patterns are altered. This procedure facilitates the development of efficient policies for reducing 

energy consumption in buildings. The remaining unresolved issue is the modeling of occupant 

behavior evolution when certain incentives motivate energy-saving behavior. A similar question 

arises when occupants are transferred to a new environment and their behavior changes 

correspondingly. The sociological and psychological aspects of occupants should be studied under 

these circumstances to gain clear explanations of the alteration of occupant behavior according to 

different incentives.  

6. Interdisciplinary research across building science, building technologies, social science, 

behavioral science, data science and computer science is needed to deeply understand, 

represent, model and simulate human behavior in buildings, and quantify their impacts on 

building energy use, occupant comfort and health. Human behavior is a critical dimension that is 

as important as technological factors in ensuring the energy-efficient design, construction, and 

operation of buildings. Annex 66 established an interdisciplinary research framework and developed 

an interdisciplinary cross-country survey on occupant energy-related behavior in buildings, which 

provides valuable data on insights of occupant behavior and the basis of occupant behavior modeling 

and simulation. 

10.2. Main outcomes 

The main outcomes from Annex 66 include (1) five technical reports, available as separate publications, 

(2) three occupant behavior modeling tools, and (3) 103 peer-reviewed journal articles (listed in Appendix 

A.5).  

The five technical reports are:  

1. Studying occupant behavior in buildings: methods and challenges, ISBN 978-0-9996964-0-8. 

2. An international survey of occupant behavior in workspaces, ISBN 978-0-9996964-3-9. 

3. Occupant behavior modeling approaches and evaluation, ISBN 978-0-9996964-1-5. 

4. Surveys to understand current needs, practice and capabilities of occupant modeling in building 

simulation, ISBN 978-0-9996964-2-2. 

5. Occupant behavior case study sourcebook, ISBN 978-0-9996964-4-6. 

The three occupant behavior modeling tools are as follows:  

1. obXML, an XML schema to standardize the representation and exchange of occupant behavior 

models for building performance simulation. obXML builds upon the DNAS ontology. A library of 

obXML files, representing typical energy-related occupant behavior in buildings, has been developed. 

These obXML files can be exchanged between different BPS programs, different applications, and 

different users.  
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2. obFMU, a modular software component in the form of functional mockup units enabling co-

simulations with BPS programs using the standard functional mockup interface. obFMU reads 

occupant behavior models represented in obXML and functions as a solver.  

3. Occupancy Simulator, a web-based application to simulate occupant presence and movement in 

buildings using stochastic models. This tool generates sub-hourly occupant schedules for each space 

and individual occupants in CSV files, which can be used for building performance simulations.  

10.3. Future research  

Annex 66 identified and tackled several key research problems on occupant behavior definition, modeling 

and simulation, data collection, experimental design, surveys, and applications. However, occupant 

behavior is a complex and interdisciplinary research topic, and there remain many challenging and 

important topics for future research. For example: 

 Definition of reliable and affordable ways to collect large-scale occupant behavior data 

 Development and application of occupant behavior models 

o Representation of inter-occupant behavior diversity. 

o Consideration of interaction of multiple occupants. 

o Fit-for-purpose, i.e. considering model fidelity for specific application context. 

o Methods and datasets for model evaluation, verification, and validation.  

o Standard approaches to integrating occupant behavior models or tools with the existing building 

performance simulation programs. 

 Applications 

o Guideline to integrate occupant behavior sensing, analytics, modeling, and simulation with the 

building lifecycle, including planning, design, construction, commissioning, operation, controls, 

and retrofit. 

o Guide technology development and evaluation, considering different scenarios of occupant 

behavior in the modeling, simulation, and evaluation of building technologies to understand the 

variation of performance, quantify risk of investment, and thus inform technology investment and 

adoption. 

o Guide energy policy making, e.g., codes and standards, considering occupant behavior in the 

evaluation and adoption of technology measures in building energy codes and standards, 

evaluating and providing credits to behavioral measures for energy saving. 

The concept proposal of a new annex, focusing on occupant behavior-based building design and operation, 

led by Andreas Wagner and William O’Brien, was approved by the IEA EBC in November 2017. This 

will continue the research and application of occupant behavior in buildings.  
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11. List of Authors 

Many participants contributed to the writing of the final report. Table 11-1 contains a complete list of 

authors for each chapter of the final report. 

 

Table 11-1: List of authors 
Chapter Authors 

Executive 

Summary 
Tianzhen Hong, Da Yan 

1 Da Yan, Tianzhen Hong 

2 Da Yan, Tianzhen Hong 

3 Da Yan, Tianzhen Hong 

4 

Andreas Wagner, Bing Dong, Liam O’Brien, Mikkel Baun Kjærgaard, Marilena De Simone, 

Burak Gunay, Dafni Mora, Jakub Dziedzic, Jie Zhao, Stephanie Gauthier, Julia Day, Chien-Fei 

Chen, Sara Gilani, Ardeshir Mahdavi, Mahnahmeh Taheri, Farhang Tahmasebi 

5 
Sebastian Wolf, Rune Korsholm Andersen, Verena Barthelmes, Burak Gunay, Jan 

Kloppenborg Møller, Henrik Madsen, William O’Brien, Marcel Schweiker, Selin Yilmaz 

6 Ardeshir Mahdavi, Farhang Tahmasebi 

7 
Tianzhen Hong, Andrew Cowie, Sumee Park, Da Yan, Kaiyu Sun, Andreas Lindner 

 

8 

Clinton Andrews, Khee Poh Lam, Cary Chan, Astrid Roetzel, Isabella Gaetani, Peter Op’t 

Veld, Ad van der Aa, Pieter Jan Hoes, Ruidong Chang, Yujie Lu 

 

9 
Chien-fei Chen, Simona D’Oca, Zsofia Deme Belafi, Tianzhen Hong, Astrid Roetzel, Julia 

Day, Marcel Schweiker, Vojislav Novakovic 

10 Tianzhen Hong, Da Yan 

11 Da Yan, Tianzhen Hong 

12 Da Yan, Tianzhen Hong 

13 Da Yan, Tianzhen Hong 

Appendices 

A and B 
Da Yan, Tianzhen Hong 
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12. Publicity  

Annex 66 uses various channels to communicate the project research goal, methods, and outcomes among 

the project participants, as well as to reach out to related activities and stakeholders, including: 

(1) One website, annex66.org  

(2) Five newsletters 

(3) 27 symposia, workshops, and seminars 

(4) Four topical issues for three journals 

(5) 103 journal articles on occupant behavior research and applications 

Details are described in Appendix A. 
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Appendices 

Appendix A: Publicity 

A.1 Newsletters 

Five newsletters (Figure A-1) that were produced for Annex 66 are available at Annex 66 website. Each 

newsletter describes Annex 66 progress, highlights achievements, and summarizes meetings held during 

those periods of the project. Some newsletters were translated into German and French. 

 
Figure A-1: Five newsletters of Annex 66 
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A.2 Website 

A website, https://annex66.org/, was created for Annex 66 to serve as a key communication and 

information portal for Annex 66 participants and interested parties. The website contains information 

about the project, subtasks, meeting announcements, list of participants, list of publications, a database of 

occupant behavior literature, events, and news. 

The website is regularly maintained and updated. The participants list is divided into active contributors 

and interested parties, and is updated weekly as requested. The publications and events pages are updated 

quarterly. The news page has related events and announcements. The next meeting page is updated with 

information about forthcoming Experts meetings. The website also contains a database of occupant 

behavior literature, which is updated once a year. Annex 66 participants can sign into the member page to 

download Experts meeting materials and slides. 

A.3 List of symposia, workshops, and seminars 

Twenty-seven symposia, workshops, and seminars on occupant behavior were organized by Annex 66 

participants. Table A-1 contains a complete list; the demographics are shown in Figure A-2. 

 

Table A-1: List of 27 symposia, workshops, and seminars 

No. Name Year Month Date City Country 

1 
Seminar at ASHRAE 

Conference 
2014 6 30 Seattle USA 

2 
Workshop on human 

behavior 
2014 8 28 Berkeley USA 

3 

Forum on occupant behavior 

simulation, ASIM 

conference 

2014 11 28 Nagoya Japan 

4 
Seminar at ASHRAE 

Conference 
2015 1 24-28 Chicago USA 

5 

Workshop on understanding 

Comfort, Attitudes and 

Behaviors 

2015 4 7-10 Windsor UK 

6 CLIMA 2016 2015 5 22-25 Aalborg Denmark 

7 
International Building 

Physics Conference 
2015 6 14-17 Torino Italy 

8 
Seminar at ASHRAE 

Conference 
2015 6 27-30 Atlanta USA 

9 ISHVAC-COBEE 2015 7 14 Tianjin China 

10 

ACEEE Summer Study on 

Energy Efficiency in 

Buildings 

2015 8 17-22 Pacific Grove USA 

11 

International Symposium on 

Sustainable Human-Building 

Ecosystems 

2015 10 5-6 CMU USA 

12 Cold Climate Conference 2015 10 20-23 Dalian China 

13 
International Conference on 

Industrial Ventilation 
2015 10 26-28 Shanghai China 

14 Seminar at ASHRAE 2016 1 27 Orlando USA 

https://annex66.org/
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Conference 

15 
Occupant Behavior 

Modeling Tools Webinar 
2016 3 15 Berkeley USA 

16 BEHAVE 2016 2016 9 8-9 Coimbra Portugal 

17 

ASHRAE Building 

Performance Simulation 

Conference 

2016 9 27-29 Atlanta USA 

18 
ASIM 2016 (IBPSA-Asia 

Conference) 
2016 11 27-29 Jeju Island South Korea 

19 
Seminar at ASHRAE 

Conference 
2017 1 31 Las Vegas USA 

20 Cold Climate HVAC 2018 2017 3 12-15 Kiruna Sweden 

21 

Symposium on Occupant 

Behavior and Adaptive 

Thermal Comfort 

2017 5 17 Lyngby Denmark 

22 
Modeling and Simulation of 

Building Occupants 
2017 5 1 Ottawa Canada 

23 
World Sustainable Built 

Environment Conference 
2017 6 5-7 Hong Kong China 

24 
Seminar at ASHRAE 

Conference 
2017 6 25 Long Beach USA 

25 
IBPSA Building Simulation 

Conference 
2017 8 7-9 San Francisco USA 

26 

The second International 

Symposium on Sustainable 

Human-Building Ecosystems 

2017 9 28-30 Beijing China 

27 
ISHVAC International 

Symposium on HVAC 
2017 10 19-22 Jinan China 

 

 
Figure A-2: Cities where Annex 66 symposia, workshops, and seminars have been held 
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A.4 List of topical journal issues 

Four topical issues (Table A-2) were organized by subtask leaders of Annex 66, publishing 64 articles on 

occupant behavior research and applications, mostly contributed by participants of Annex 66.  

 

Table A-2: Four topical issues 

No. Journal Topic Guest Editor 
Number 

of articles 
URL 

1 
Energy and 

Buildings 

Advances in 

building energy 

modeling and 

simulation 

Tianzhen Hong 15 

http://www.sciencedirect.com/science/jou

rnal/03787788/vsi/10K0F4HG0ND?sdc=

1 

2 
Energy and 

Buildings 

Occupancy 

behavior in 

buildings: 

modeling, 

simulation, and 

application 

Andreas 

Wagner and 

Bing Dong 

17 
http://www.sciencedirect.com/science/jou

rnal/03787788/vsi/10R14N5DN35?sdc=1 

3 

Building 

Performance 

Simulation 

Fundamentals of 

occupant 

behavior 

research 

Liam O’Brien, 

Ardeshir 

Mahdavi, 

Burak Gunay, 

Farhang 

Tahmasebi 

15 

http://www.tandfonline.com/action/doSea

rch?AllField=Fundamentals+of+occupan

t+behavior+research&SeriesKey=tbps20 

4 
Building 

Simulation 

Applications of 

occupant behavior 

modeling 

Clinton 

Andrews and 

Bing Dong 

17 
https://link.springer.com/journal/12273/1

0/6?wt_mc=alerts.TOCjournals  

 

A.5 List of publications  

With a large group of participants in Annex 66, many journal articles have been published on occupant 

behavior research and applications. The following list shows articles published from 2014–2017. 
 

[1] S. D’Oca, V. Fabi, S. P. Corgnati, and R. K. Andersen, “Effect of thermostat and window opening occupant 

behavior models on energy use in homes,” Building Simulation, vol. 7, no. 6, pp. 683-694, 2014. 
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Appendix B: Participants 

B.1 Participating countries 

There were 17 official participating countries in Annex 66. Tables B-1 and B-2 list the 123 contributors 

and 54 interested parties of Annex 66. 
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B.2 Communication and meetings 

There were nine in-person Experts meetings (Table B-3), including one international workshop to 

develop the concept of Annex 66 in 2013, two meetings during the preparation phase in 2014, and six 

meetings during the working phase from 2014–2017. The first Experts meeting in the working phase was 

held at LBNL, Berkeley, USA, to officially kick off the research activities. The final Experts meeting, 

held at Tsinghua University, Beijing, China, summarized the key research activities and outcomes of 

Annex 66. Several conference calls were organized among the operating agents and subtask leaders to 

discuss project progress and coordinate research activities. 

 

Table B-3: Nine meetings of Annex 66 

No. Date City 
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participating 
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Number of 
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th
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